工业水处理

段越, 罗学刚. 制药废水的响应面法优化 O₃/Fe-C 微电解预处理工艺[J]. 净水技术, 2023, 42(2):109-116. DUAN Y, LUO X G. Process of optimized O₃/Fe-C by RSM of microelectrolysis for pharmaceutical wastewater pretreatment[J]. Water Purification Technology, 2023, 42(2):109-116.

制药废水的响应面法优化 O₃/Fe-C 微电解预处理工艺

段 越, 罗学刚* (西南科技大学生命科学与工程学院, 四川绵阳 621010)

摘 要研究将 O₃ 与 Fe-C 微电解工艺相耦合,以浙江某大型制药企业产生的废水为研究对象,进行耦合工艺小试试验。分别探究了 Fe-C 球投加量、初始 pH 和 O₃ 剂量 3 种主要因素,采用响应面法(RSM)对工艺参数进行了优化。得出了工艺最佳参数为:Fe-C 球投加量为 592 g/L,pH 值为 5.9,O₃ 剂量为 285 mg/(L·h),处理后 COD_{cr} 质量浓度为 1 092 mg/L,去除率可达 48.61%。3 种因素对耦合工艺的影响程度为 Fe-C 球投加量>O₃ 剂量>初始 pH,对应的 F 值分别为 509.59、30.54、11.48。该工艺相较于传统的微电解工艺,具有更高的 COD_{cr} 去除效果,可推广应用于工业中制药废水的预处理。

关键词 臭氧 微电解 响应面法 制药废水 耦合工艺

中图分类号: TQ09 文献标识码: A 文章编号: 1009-0177(2023)02-0109-08 **DOI**: 10.15890/j. cnki. jsjs. 2023. 02. 014

Process of Optimized O_3 /Fe-C by RSM of Microelectrolysis for Pharmaceutical Wastewater Pretreatment

DUAN Yue, LUO Xuegang

(School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China)

Abstract In this study, the O_3 and Fe-C microelectrolysis process were coupled, and the wastewater generated from a large pharmaceutical company in Zhejiang was used as the research object to carry out the coupling process. The three main factors of Fe-C ball dosage, initial pH and O_3 dosage were explored respectively, and the process parameters were optimized by response surface methodology (RSM). The optimum parameters of the process were obtained as follows: Fe-C ball dosage was 592 g/L, pH value was 5.9, O_3 dosage was 285 mg/(L·h), and COD_{Cr} mass concentration after treatment was 1 092 mg/L with COD_{Cr} removal efficiency of 48.61%. The influence of the three factors on the coupling process was Fe-C ball dosage > O_3 dosage > initial pH, the *F* value were 509.59, 30.54, 11.48. Compared with the traditional microelectrolysis process, the process has higher COD_{Cr} removal efficiency and can be widely used in the pretreatment of pharmaceutical wastewater in industry.

Keywords ozone microelectrolysis response surface methodology(RSM) pharmaceutical wastewater coupling process

21世纪以来,制药工业飞速发展,创造了巨大的经济效益与社会价值。然而,制药业对生态环境造成了巨大的冲击,尤以水污染最为突出^[1-2]。美

[基金项目] 国防基础科研计划(16zg6101)

国环境保护署已将药物化合物列为了新的环境污染物^[3]。此外,为了辅助药物生产,制药企业常使用 大量的无机试剂,导致制药废水中盐含量极高,增加 了制药废水的处理难度^[4]。制药废水中丰富的 N、 P造成环境水体富营养化,而废水中的残余药物还 会影响水体微生物的生长和代谢^[5-6]。因此,在制 药废水排入环境水体前,必须进行净化处理。

目前,制药废水的处理技术包括物理处理、化学

[[]收稿日期] 2022-05-09

[[]作者简介] 段越(1996—),硕士,研究方向为微生物学与废水 处理,E-mail:984445130@qq.com。

[[]通信作者] 罗学刚,教授,E-mail:lxg@ swust.edu.cn。

处理和生物处理[7]。由于制药废水复杂的理化性 质,直接使用生物处理往往不能达到预期效果,需要 先采用物化手段对制药废水进行预处理。常用的物 化法有混凝吸附、微电解及高级氧化等[8-9]。单一 的处理手段往往效率较低,因此,研究者常将多种工 艺进行组合以提高废水的净化效果。如许素梅^[10] 将原电池与 AO 工艺进行耦合处理畜禽养殖废水: 姚小文^[11]采用微电解-芬顿氧化-AO 组合工艺处 理抗生素废水等。本研究采用 0, 与微电解耦合的 方式对制药废水进行预处理,用化学需氧量(COD) 作为评价指标,该工艺的反应原理及主要方程如图 1 所示^[12-13]。试验分别探究了 Fe-C 球投加量、初始 pH和O,剂量3种因素对处理工艺的影响,并用响 应面法 (response surface methodology, RSM) 对 3 种 工艺参数做了进一步优化,同时比较了各因素之间 的交互影响,为制药废水的预处理提供了一定的技 术参考。

图1 O₃/Fe-C 微电解工艺的降解机理

Fig. 1 Degradation Mechanism of O₃/Fe-C Microelectrolysis Process

1 材料和方法

1.1 试验水样

试验用制药废水取自中国浙江省某大型制药企 业园污水处理厂,水样颜色微黄,具有刺激性味道, 主要指标:pH 值为 8.4 ± 0.3、COD_{cr} 质量浓度为 (22 000±200)mg/L、盐含量为 24.6%±1.2%(质量 分数)。

1.2 试剂与仪器

邻苯二甲酸氢钾(C₈H₅KO₄, CAS: 877-24-7)、 硫酸(H₂SO₄, CAS: 7664-93-9)、氢氧化钠(NaOH, CAS: 1310-73-2)、重铬酸钾(K₂Cr₂O₇, CAS: 7778-50-9)、硫酸银(Ag₂SO₄, CAS: 10294-26-5),均为分 析纯,购自成都科隆化学品有限公司,用于配制试验 所需试剂;去离子水作为稀释用水;Fe-C 球购于绿 之原活性炭有限公司,含铁量为 65%~75%,直径为 8~10 mm。

LH-C660型 COD 快速测定仪,陆恒生物科技有限公司;LZB-3WB 和 LZB-4WB 型空气流量计,合肥 最节仪表科技有限公司;V-60 型空气泵,广东海利 集团有限公司;SQ-5型 O₃发生器,匠心华创;ADKS-1便携式 O₃检测仪,爱德克斯;CT-6023 便携 式 pH 计,柯迪达。

1.3 单因素试验

试验装置由 500 mL 试剂瓶、空气流量计、空气 泵 O_3 发生器及 O_3 浓度检测仪组成,如图 2 所示。 考虑到经济成本和实验室环境,将制药废水用去离 子水稀释 10 倍,作为试验用水。试验采用控制变量 法,向 500 mL 试剂瓶中加入 300 mL 试验用水,保持 两个独立因素不变的情况下,分别探究 Fe-C 球投加 量(100、300、500、600、800、1 000 g/L)、pH 值(2.0、 3.0、4.0、5.0、6.0、7.0)及 O_3 剂量[60、120、180、 240、300、360 mg/(h·L)]对 COD_{Cr} 去除效果的影 响,反应时间为 120 min,每组试验重复 3 次。此外, 为了排除不同曝气量对反应体系的影响,采用空气泵 作为补偿气源,以维持反应体系的气体流量为 2 L/min。

1.4 RSM 优化参数

对独立因素试验结果进行多重比较分析,并用 Waller-Duncan进行显著性标记,选择合适的参数水 平,采用 Box-Behnken RSM 优化工艺参数。试验方 案采用 Design Expert 8.0.6软件进行设计。通过对 RSM 试验结果进行统计学方差分析,探讨不同独立 因素对反应体系的影响及其交互关系,并对 RSM 模 型预测的最佳参数进行试验验证。

1.5 分析方法

COD_{cr} 的测定参考国家标准方法^[14],采用陆恒 生物科技有限公司生产的便携式水质检测仪(LH-C660)进行测定。

- 2 结果与讨论
- 2.1 单因素试验
- 2.1.1 Fe-C 球投加量的影响

在维持 pH 值为 4.0、0, 剂量为 180 mg/(L·h)

— 110 —

往:1-O,发生器: 2-O,浓度检测仪: 3-LZB-3WB空气流量计: 4-反应柱: 5-LZB-4WB空气流量计: 6-空气泵.

图2 试验装置示意图

Fig. 2 Schematic Diagram of Test Device

条件下,向反应体系加入不同的 Fe-C 球剂量,以探 究其对 COD_{cr} 去除率的影响,结果如图 3 所示。

注:不同字母代表数据具有显著性差异,相同字母代表两者 之间不具有显著性差异,下同。

图3 Fe-C 球投加量对 COD_{cr} 去除的影响

Fig. 3 Effect of Fe-C Ball Dosage on COD_{Cr} Removal

由图 3 可知,随着 Fe-C 球投加量的增加, O₃/Fe-C 耦合工艺对制药废水中的 COD_{cr} 去除效果 先增加再缓慢减弱。当 Fe-C 球投加量为 600 g/L 时,反应完全后,COD_{cr}质量浓度为1273 mg/L,去 除率为 37.90%;在 Fe-C 球投加量为 100~500 g/L, COD_{cr} 去除率上升显著;当投加量超过 500 g/L 时, COD_{cr} 去除率虽出现缓慢上升再逐渐下降的趋势, 但不具有显著性差异。说明在投入一定剂量的 Fe-C 球后,反应体系会达到动态平衡,此时再改变 Fe-C 球投加量时,会减弱 COD_{cr} 的去除效果。图 3 还进一步说明了过量的 Fe-C 球投加量对反应体系 影响较小。罗剑非等[15]在用微电解预处理腈纶废 水试验中,得到了与本研究相似的结果。出现这种 现象的可能原因是,Fe-C 球在酸性环境下会发生原 电池反应, Fe 作为阳极会溢出 Fe²⁺、Fe³⁺; C 作为阴 极,周围的H⁺得电子会生成新生态的[H]。Fe²⁺与 [H]都具有较高的氧化性,会诱发大分子有机物断 链或将小分子有机物氧化为 CO₂ 和 H₂O。在 Fe-C 球投加量较少时,形成的原电池数量较少,从而降低 了废水中 COD_{cr} 的去除率;当 Fe-C 球投加量逐渐增 加时,Fe²⁺与[H] 会趋于饱和;当继续增加投加量 时,Fe²⁺与[H] 不但不能得到有效利用,还会抑制原 电池反应的发生^[16]。

2.1.2 pH 的影响

在维持 Fe-C 球投加量为 600 g/L、O₃ 剂量为 180 mg/(L·h)条件下,改变试验用水的初始 pH,以 探究其对 COD_{cr} 去除率的影响,结果如图 4 所示。

Fig. 4 Effect of pH Value on COD_{Cr} Removal

由图 4 可知,随着 pH 的增大,COD_{cr} 去除率先 上升并趋于平衡,且在 pH 值为 7 时去除效果最好, 此时 COD_{cr} 质量浓度为 1 185 mg/L,去除率为 42.25%。常规的 Fe-C 微电解依赖于酸性环境,且 随着 pH 的增大,COD_{cr} 去除效果往往呈现先增加再 减弱的变化,如贺蛟等^[17]和李永连^[18]的研究。然 而,在本研究中,不但拓宽了传统 Fe-C 微电解的 pH 限制,还使得 COD_{cr} 去除率在中性环境维持一个较 高的水平。其原因很大可能是,本研究向 Fe-C 微电 解反应体系中通入了 O₃,O₃ 本身具有氧化性,在 pH

- 111 -

较低时,可直接氧化废水中的有机物,当 pH 增大时,OH⁻会诱发 O₃ 分子生成超氧离子(O_2),进而形成具有极强氧化性的羟基自由基(·OH),·OH 可快速分解废水中的有机物^[19]。结合本试验可推测,在O₃/Fe-C 耦合工艺反应体系中,当 pH 较低时,原电池反应占主导位置,随着 pH 的增大,O₃ 催化氧化作用逐渐增强。当 pH 增大到某一范围时,两种反应可能出现拮抗作用,降低各自的催化效率,如本试验中,在 pH 值为 6 时,COD_{Cr} 去除率有所下降。 2.1.3 O₃ 剂量的影响

在维持 Fe-C 球投加量为 600 g/L、pH 值为 5 的 条件下,调节 O₃ 发生器的流量,以探究 O₃ 剂量对 COD_{cr} 去除率的影响,结果如图 5 所示。

Fig. 5 Effect of O₃ Dosage on COD_{Cr} Removal

由图 5 可知,随着 O₃ 剂量的增加,COD_{cr} 去除率 逐渐上升并趋于平衡,当 O₃ 剂量为 240 mg/(L·h) 时,初次达到平衡点,此时 COD_{cr} 质量浓度为 1 225 mg/L,去除率为 46.61%。解方^[20]采用 O₃/微电解 组合工艺预处理印染废水,得出了与本研究相似的 研究结果。出现该现象的可能原因是,当 O₃ 剂量 较低时,O₃ 的氧化作用较弱,也不能催化·OH 的产 生,随着 O₃ 剂量的增加,O₃ 的催化氧化能力增强, 产生的·OH 更多,而当 O₃ 剂量增加到某一浓度时, 反应体系中的 O₃ 会达到饱和,此时再增加 O₃ 剂 量,O₃ 分子得不到有效利用而直接溢出水面。此 外,当废水中的 OH⁻趋于平衡时,只能有限地诱发 O₃ 分子产生·OH,也会使得 O₃ 分子不能被完全利 用^[21]。

2.2 工艺参数优化

2.2.1 试验设计

基于单因素试验结果的统计分析,当单因素试

验结果出现峰值时,以最高去除率为中心,选取峰值 前后具有显著差异的水平区间做进一步的优化;当 试验结果趋于平衡时,以第一次达到平衡点为中心, 前区间选择与平衡点具有显著差异的水平点,后区 间选择平衡后第二点,以该区间为水平优化区 间^[22]。具体的方案设计与试验结果如表1所示。

表 1 响应面法试验方案及结果 Tab. 1 Design Scheme and Result of RSM Experiment

		因素	^		
序号	A:Fe-C 球投加 量/(g·L ⁻¹)	B:pH值	C:O ₃ 剂量/ (mg·L ⁻¹ ·h ⁻¹)	COD _{Cr} 去除率	
1	450	5.5	240	45.62%	
2	450	5.5	240	46.27%	
3	300	5.5	180	38.26%	
4	300	5.5	300	40.68%	
5	600	5.5	180	46.27%	
6	600	4.0	240	46. 74%	
7	450	5.5	240	46.64%	
8	300	7.0	240	40. 10%	
9	600	7.0	240	49.11%	
10	450	4.0	300	43.94%	
11	450	5.5	240	45.43%	
12	450	5.5	240	46. 18%	
13	300	4.0	240	39.33%	
14	450	4.0	180	43.01%	
15	450	7.0	180	43.38%	
16	450	7.0	300	45.34%	
17	600	5.5	300	48.97%	

2.2.2 方差分析

表 2 显示了 RSM 二次回归模型的 ANOVA 结 果。由表 2 可知, COD_{cr} 去除模型的 F 值为 69.48、 P 值小于 0.000 1,处于极显著水平, 而失拟项 F 值 为 1.17、P 值大于 0.05, 不具有显著性。同时, 试验 所得结果与模型预测结果趋近于一条直线, 如图 6 (a)所示, 综合说明了试验所得模型具有很高的准 确性与可靠性。从表 2 中还可以得出, 参数 A 和 C 对模型有极显著影响, 参数 B 对模型有显著影响, 且影响程度为 A>C>B, 对应的 F 值分别为 509.59、 30.54、11.48, 该结果也可通过 3 种独立因素的扰动 图加以证实, 如图 6(b)所示。对响应面模型进行多 项式回归分析, 可得到 COD_{cr} 去除模型的拟合方程 ($R^2=0.988$ 9, 校正 $R^2=0.974$ 7), 其表达如式(1)。

表2 RSM 二次回归 ANOVA 分析

	Tab. 2 A	INOVA Analysis	for KSM Qu	adratic negres	sion Model
	来源	自由度	<i>F</i> 值	<i>P</i> 值	显著性
RSM 模型		빈 9	69.48	< 0.000 1	极显著
A		1	509.59	< 0.000 1	极显著
	В	1	11.48	0.011 6	显著
	С	1	30.54	0.000 9	极显著
失拟项		3	1.17	0.426 1	不显著

COD_{Cr} 去除率=(46.03+4.09A+0.61B+ 1.00C+0.40AB+0.070AC+0.26BC-

$$1.29A^2 - 0.92B^2 - 1.19C^2 \times 100\%$$
(1)

2.2.3 三维曲面

RSM 模型可通过保持一个因素不变,分析其他 两个因素对响应值的影响,实现不同独立因素之间 的相互作用,并用三维曲面和等高线图进行直观展 示,如图 7 所示。一般而言,三维曲面越陡峭、等高

图6 试验结果对比

Fig. 6 Comparison of Experimental Results

数据也对这一结果加以了验证。

线图呈椭圆,两种因素之间的交互作用越强,若三维 曲面趋于平滑、等高线呈圆形,说明两种因素之间交 互性较弱^[23]。由图 7(a)、图 7(d)可知,当保持 pH 值为 5.5 不变时,在 Fe-C 球投加量为 300~600 g/L 时,COD_c 去除率随投加量的增加而显著上升;在 O₃ 剂量为180~300 mg/(L·h)时,COD_{cr}去除率随 O₃剂量的提高而缓慢上升, Fe-C 球投加量与 O₃剂 量交互影响形成的三维曲面陡峭并具有很大的坡 度,且等高线较密集,说明 Fe-C 球投加量与 O, 剂量 之间交互作用显著。图7(b)表示在 O₃ 剂量为 240 mg/(L·h)时,pH与Fe-C球投加量的交互作用,该 三维曲面与图 7(a)相似,说明两种因素之间也具有 很强的交互性;但结合图 7(e)可知,在 pH 值为 4.0~7.0时,COD_{cr}去除率在三维曲面中几乎显示 在同一等高线,从而可推测 pH 在该工艺中不是主 要的影响参数。图 7(c)、图 7(f)表示在 Fe-C 球投 加量为450 g/L时,pH与O,剂量的交互作用,该三 维曲面趋于平坦,同时等高线较稀疏,说明这两种因 素的交互作用对 COD_{cr} 的去除效果较弱。结合上 述分析可知, Fe-C 球投加量在 O₃/Fe-C 微电解工艺 中占据着主导作用, 而 pH 的影响较小, 表 2 中各项

通过 RSM 模型的优化,可得到 O₃/Fe-C 耦合工 艺预处理制药废水的最佳工艺参数:Fe-C 投加量为 592 g/L,pH 值为 5.9,O₃ 剂量为 285 mg/(L·h),理 论的 COD_{cr} 去除率可达到 49.12%。

2.2.4 最优参数验证

采用 RSM 模型得出的最佳参数,设计 5 组平行 试验,得到处理前废水 COD_{Cr} 平均质量浓度为 2 125 mg/L,处理后 COD_{Cr} 平均质量浓度为 1 092 mg/L, 去除率为 48.61%,与预测结果不具有显著性差异, 证明了最优参数的可靠性和 RSM 模型的准确性。

3 结论

本研究选取 Fe-C 球投加量、初始 pH 和 O₃ 剂量 3 种因素探究 O₃/Fe-C 微电解耦合工艺对制药废水的预处理效果,并采用 RSM 对工艺参数进行了优化,其主要结果如下。

(1) 3 种因素对 O₃/Fe-C 微电解耦合工艺的影 响关系为 Fe-C 球投加量 > O₃ 剂量> 初始 pH,其对 应的 F 值分别为 509. 59、30. 54、11. 48。

(2) 采用 RSM 模型对 3 种因素进行了优化,得

— 113 —

图 7 COD_{Cr} 去除的三维曲面图和等高线图 Fig. 7 Three Dimension Surface Graph and Contour Plots for COD_{Cr} Removal

出最佳参数: Fe-C 球投加量为 592 g/L, pH 值为 5.9, O₃ 剂量为 285 mg/(L·h)。该条件下处理后 COD_{Cr} 质量浓度为 1 092 mg/L, 去除率可达 48.61%。分析其三维曲面可知, Fe-C 球投加量 pH 与和 O₃ 剂量都具有较强的交互作用, 而 pH 与 O₃ 剂量交互作用较弱。

(3) O₃/Fe-C 微电解耦合工艺拓宽了传统微电 解工艺的 pH 限制,具有更广的适用性。

4 展望

目前,高盐、高有机废水的降解是工业水处理亟 需解决的关键技术问题。制药废水常具有极高的盐 含量和 COD_{cr} 浓度,其可生化性也往往较差,常规 的处理工艺难以对其进行降解。本研究采用 O₃ 与 Fe-C 微电解相耦合的方式,有效地去除了废水中的 COD_{cr},减轻了后续处理的压力。然而,该工艺的 COD_{cr},去除效率有限,难以采用生物手段进行深度 净化。因此,可设计多级物化处理工艺如 Fenton 氧 化、混凝沉淀等方式对本工艺出水进行再降解,进而 可采用 AO、藻菌共生等手段对废水进行优化,使其 能达标排放。总之,本研究为制药废水,特别是高盐 度、高 COD_{cr} 制药废水的预处理提供了一定的技术 参考,但制药废水完整的处理工艺仍需做进一步的 探究。

参考文献

[1] RASHEED T, SHAFI S, BILAL M, et al. Surfactants-based remediation as an effective approach for removal of environmental pollutants-A review [J]. Journal of Molecular Liquids, 2020,

— 114 —

318: 113960. DOI: 10. 1016/j. molliq. 2020. 113960.

- LEE S H, KIM K H, LEE M, et al. Detection status and removal characteristics of pharmaceuticals in wastewater treatment effluent[J]. Journal of Water Process Engineering, 2019, 31: 100828. DOI: 10.1016/j.jwpe.2019.100828.
- [3] KHOSHVAGHT H, DELNAVAZ M, LEILI M. Optimization of acetaminophen removal from high load synthetic pharmaceutical wastewater by experimental and ANOVA analysis[J]. Journal of Water Process Engineering, 2021, 42: 102107. DOI: 10.1016/ j. jwpe. 2021. 102107.
- VERLICCHI P, AUKIDY A A, ZAMBELLO E. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment-A review
 [J]. Science of the Total Environment, 2012, 429: 123-155. DOI: 10.1016/j.scitotenv.2012.04.028.
- [5] GURUNG A, KANG W C, OH S E. Removal of nitrogen from anaerobically digested swine wastewater using an anoxic/oxic (A/O) process complemented with a sulfur-packed biofilter[J]. African Journal of Biotechnology, 2013, 10(48):9831-9838. DOI: 10.5897/ajb10.1027.
- [6] ASHFAQ M, KHAN K N, REHMAN M, et al. Ecological risk assessment of pharmaceuticals in the receiving environment of pharmaceutical wastewater in Pakistan [J]. Ecotoxicology and Environmental Safety, 2017, 136: 31-39. DOI: 10.1016/j. ecoenv. 2016. 10. 029.
- [7] 张岩.制药废水处理技术研究进展[J].工业水处理,2018, 38(5):5-9.
 ZHANG Y. Research progress in the treatment technologies of pharmaceutical wastewater [J]. Industrial Water Treatment, 2018, 38(5):5-9.
- [8] LI C R, QIAN K, LIU Q Y, et al. Process design of highconcentration benzimidazole wastewater treatment based on the molecular structure of contaminants [J]. Environmental Technology, 2018, 38: 1007-1016. DOI: 10. 1080/ 09593330. 2017. 1317844.
- [9] SHIRAFKAN A, NOWEE S M, RAMEZANIAN N, et al. Hybrid coagulation/ozonation treatment of pharmaceutical wastewater using ferric chloride, polyaluminum chloride and ozone [J]. International Journal of Environmental Science & Technology, 2016, 13(6): 1443-1452. DOI: 10.1007/s13762-016-0965-8.
- [10] 许素梅.原电池耦合 A/O-MBR 处理畜禽养殖废水抗生素应用基础研究[D]. 绵阳:西南科技大学,2020.
 XU S M. Basic Study on the application of galvanic cell coupling A/O-MBR to the treatment of antibiotics in livestock and poultry breeding wastewater [D]. Mianyang: Southwest University of Science and Technology, 2020.
- [11] 姚小文. 铁碳微电解-Fenton+两级 A/O 工艺处理抗生素废 水的应用研究[D]. 南昌; 南昌大学, 2019.

YAO X W. Study and application of the treatment of pharmaceutical wastewater containing antibiotics by combination process of Fe/C microelectrolysis-Fenton + two-stage A/O[D]. Nanchang: Nanchang University, 2019.

- [12] 张帅,赵志伟,彭伟,等. 铁碳微电解技术在水处理中的应用[J]. 化学与生物工程,2016,33(12):14-18.
 ZHANG S, ZHAO Z W, PENG W, et al. Applications of iron carbon micro-electrolysis technology in water treatment [J]. Chemistry & Bioengineering, 2016, 33(12):14-18.
- [13] 李玉英. 微电解-臭氧化协同降解水中水杨酸的研究[D]. 泰安:山东农业大学, 2018.
 LIYY. Degradation of salicylic acid in aqueous solution by micro-electrolysis combined with ozonation [D]. Taian: Shandong Agricultural University, 2018.
- [14] 国家环境保护总局.水质化学需氧量的测定快速消解分光 光度法:HJ/T 399—2007[S].北京:中国环境科学出版社, 2008.
 State Environmental Protection Administration. Water quality -

Determination of the chemical oxygen demand – Fast digestion-Spectrophotometric method: HJ/T 399—2007 [S]. Beijing: China Environmental Science Press, 2008.

- [15] 罗剑非,陈威,王宗平. 铁碳微电解预处理腈纶废水的试验 研究[J]. 工业水处理, 2018, 38(9):91-93, 99.
 LUO J F, CHEN W, WANG Z P. Experimental research on the treatment of acrylic fiber wastewater by iron carbon microelectrolysis process[J]. Industrial Water Treatment, 2018, 38 (9):91-93, 99.
- [16] 王悦. 铁碳微电解系统的性能及优化研究[D]. 哈尔滨:哈尔滨工程大学, 2017.

WANG Y. Research and optimization of performance of ironcarbon microelectrolysis [D]. Harbin: Harbin Engineering University, 2017.

- [17] 贺蛟,罗平.铁碳微电解-Fenton联合预处理制药废水[J]. 给水排水,2012,48(s1):254-255.
 HE J, LUO P. Pretreatment of pharmaceutical wastewater by iron-carbon microelectrolysis and Fenton [J]. Water & Wastewater Engineering, 2012,48(s1):254-255.
- [18] 李永连. 铁碳-Fenton 法强化预处理邻硝基对甲苯酚废水
 [J]. 工业水处理, 2021, 41(5): 99-103.
 LI Y L. Enhanced pretreatment of 2-nitro-paracresol wastewater by Fe/C-Fenton process[J]. Industrial Water Treatment, 2021, 41(5): 99-103.
- [19] ZHU X F, XU X H. The mechanism of Fe (III)-catalyzed ozonation of phenol[J]. Journal of Zhejiang University Science, 2004, 5(12): 1543-1547. DOI: 10.1631/jzus.2004.1543.
- [20] 解方. 臭氧/微电解协同预处理印染废水研究[D]. 北京:北 京林业大学, 2020.
 XIE F. Study on pretreatment of dyeing wastewater by ozonated internal electrolysis process [D]. Beijing; Beijing Forestry

University, 2020.

- [21] 李翊豪. 臭氧/微电解工艺处理化纤印染废水效能研究[D]. 哈尔滨:哈尔滨工业大学,2017.
 - LI Y H. Efficacy of ozone/microelectrolysis process treating chemical fiber dyeing wastewater [D]. Harbin: Harbin Institute of Technology, 2017.
- [22] KARIMIFARD S, MOGHADDAM M. Application of response surface methodology in physicochemical removal of dyes from

(上接第46页)

- [48] 吴娜,薛晓莉,张志立,等.农村污水治理现状及一体化水处理设施的应用[J].现代农业科技,2020(1):173-174.
 WUN, XUE X L, ZHANG Z L, et al. Current situation of rural sewage treatment and application of integrated water treatment facilities[J]. Modern Agricultural Science and Technology, 2020(1):173-174.
- [49] 孟祥芬.农村生活污水一体化处理工艺探讨[J].黑龙江环境通报,2018,42(4):56-60.
 MENG X F. Discussion on the integrated treatment process of rural domestic sewage [J]. Heilongjiang Environmental Journal, 2018,42(4):56-60.
- [50] 晁雷,李婧男,李亚峰. 兼氧 MBR 工艺在北方农村污水处理 工程中的应用[J]. 工业水处理, 2019, 39(4): 97-99.
 CHAO L, LI J N, LI Y F. Application of facultative oxygen MBR process to rural sewage treatment projects in northern China
 [J]. Industrial Water Treatment, 2019, 39(4): 97-99.
- [51] 艾晨亮.小型一体化农村生活污水处理设施研究及应用
 [J].建筑与预算, 2018(8): 28-31.
 AI C L. Research and application of small-scale integrated rural domestic sewage treatment facilities[J]. Construction and Budget, 2018(8): 28-31.
- [52] 谷成国, 王松, 崔鑫, 等. 东北地区村镇污水中一体化污水 处理设备的应用[J]. 环境保护与循环经济, 2020, 40(7): 18-22.
 GUCG, WANGS, CUIX, et al. Application of integrated sewage treatment equipment in villages and towns in northeast China
 [J]. Environmental Protection and Circular Economy, 2020, 40 (7): 18-22.

[53] 张瑞斌,奚道国,王乐阳,等. A/O+铝污泥填料人工湿地组合工艺处理农村生活污水的效果[J].环境工程技术学报,2019,9(2):145-150.
 ZHANG R B, XI D G, WAGN L Y, et al. Effect of A/O + alu-

wastewater: A critical review [J]. Science of the Total Environment, 2018, 640/641: 772 – 797. DOI: 10. 1016/j. scitotenv. 2018. 08. 435.

[23] BEZERRA M A, SANTELLI R E, OLIVEIRA E P, et al. Response surface methodology (RSM) as a tool for optimization in analytical chemistry[J]. Talanta, 2008, 76(5): 965-977. DOI: 10.1016/j.talanta.2008.05.019.

> minum sludge filled constructed wetland combined process on rural domestic sewage [J]. Journal of Environmental Engineering Technology, 2019, 9(2): 145-150.

- [54] 宋铁红,丁大伟,王野,等. 冬季人工湿地内微生物活性和 除污效率分析[J]. 水处理技术,2008(9):68-70.
 SONG T H, DING D W, WANG Y, et al. Study on pollutant treatment by microorganism in winter artificial wetland[J]. Technology of Water Treatment, 2008(9):68-70.
- [55] 吴迪,高贤彪,李玉华,等.两级回流生物膜工艺处理农村 生活污水效果[J].农业工程学报,2013,29(1):218-224.
 WU D, GAO X B, LI Y H, et al. Treatment effect of rural domestic sewage in rural area using biofilm with two-stage reflux
 [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(1): 218-224.
- [56] 胡奇. 生物接触氧化-温室结构潜流人工湿地处理农村生活 污水[D]. 哈尔滨:哈尔滨工业大学, 2011.
 HU Q. Study on treatment of biological contact oxidization and greenhouse structure subsurface-flow constructed wetland for processing rural domestic sewage[D]. Harbin: Harbin Institute of Technology, 2011.
- [57] 边喜龙,于景洋,孙彩玉,等. 寒冷地区农村分散式污水处理工艺的探讨与实践[J]. 江苏建筑职业技术学院学报,2017,17(3):36-39.
 BIAN X L, YU J Y, SUN C Y, et al. Discussion and practice on decentralized sewage treatment process of cold rural area [J]. Journal of Jiangsu Vocational Institute of Architecture Technology, 2017, 17(3):36-39.
- [58] 唐抒圆.人工湿地处理低温地区农村污水的工程设计与运行效果分析[D].长春:吉林大学,2014.
 TANG S Y. Engineering design and running effect analysis of rural sewage treatment by constructed wetland in low-temperature area[D]. Changchun: Jilin University, 2014.