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Abstract [ Objective] Reducting cost and saving energy are the inevitable trends of reverse osmosis desalination technology, the
reverse osmosis system design is an important factor affecting cost and energy consumption. [ Methods ] In this paper, taking the
design conditions of a seawater desalination plant in Tianjin as an example, technology and economy efficiency for split partial second-
pass reverse osmosis ( SPSP) , split partial single-pass reverse osmosis (SSP) and partial second-pass reverse osmosis ( PSP) was
compared based on single seawater reverse osmosis (SWRO) by using software simulation, [ Results]  Factors influencing critical
temperature and specific energy consumption ( SEC) including raw water quality and operation time were discussed. The result

indicated that SPSP had the best temperature control range and energy saving effect. With constant water quality, quantity and system
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recovery, the temperature control range of SPSP was 0—10 °C, while that of SSP and PSP was 0-3 “C, which were indispensable of
raw water quality and operation time; Under the same water quality conditions and operation time, the SEC of SPSP was consistently
the lowest among the four design method. Taking SPSP as the research object, the factors of product water quality and split ratio
associated with temperature control range were further discussed, the result showed that the influence of the split ratio was more
significant than the product water quality; With a 5% increase in the split ratio, the critical temperature displayed 3 °C incease, which
the requirement for the mass concentration of Cl™ in product water quality was increased from 160 mg/L to 60 mg/L, the critical
temperature decreases by only 3 °C. Taking capital expenditure and operating expenditure for economic comparison, SPSP achieved a

balance between increasing expenditure and reducing energy consumption, exhibiting more economic advantages than SSP and PSP.

[ Conclusion |

seawater desalination reverse osmosis
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single seawater reverse osmosis ( SWRO)

Overall, SPSP is the best technology and economy-efficient method for reverse osmosis system design.

split partial single-pass reverse

split partial second-pass reverse osmosis ( SPSP)
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Tab. 1 International Seawater Desalination Plants Using
SPSP Design Method"™®’

P i A AEVEITTE] BB (m®-d )
DREr]| Soreq 2013 4 540 000
Hadera 2010 4 350 000
Ashkelon 2005 4 330 000
Palmachim [ 2007 4 110 000
Palmachim I 2010 4 150 000
Palmachim Il 2013 4 300 000
PEPEF  Aguilas-Guadalentin 2013 4F 181 000
e Carlshad 2015 4 190 000
HE Gijiang 2014 4F 45 000
BARFI Adelaide 2012 4F 300 000
Gold Coast 2009 4F 133 000
Perth 11 2013 4 306 000

[ R SPSP B3R L) dh . H Ak
WAL (=1 50 000 m*/d,2022 4F) F5 5 #E R OIR
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ek
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kK AL
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1 240 m¥/h
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e ek
(c) SSP (d) PSP

1 4 Rt 7 O A
Fig. 1 Flow Balance for Four Design Methods

19 410,21 230 mg/L) 5&1F N, FEWI s E W (0
4E) ,SWRO SSP . SPSP PSP 4 Fiiit 77 23k 3] il A
KT (B CI o v B e R 120 mg/L) B (4l S5 Vi
FEAH X BRI PO R RSk I — e A
I AR5 ) Bt JOT X IO P 90 88, a3k — V3
SOV E S E, BN, ASHIE ST BB E S5 R C
R Fe i O 120 mg/L, 248 i B — IR I,
KA Cl R B 22 8 T 120 mg/L, X — iR B A
I PR

2 ok TDS AR X AN Rl T7 3l 548 B 1) 52 i)
Fig.2 Influence of Inflow TDS Variablity on Critical
Temperatures for Different Design Configuration
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JEE RS0 R W b T At 2 Fh szt
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Kl 3 WoRFE 3 FR[RIEK TDS 444 ,SWRO
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SEC,
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B 3 7K TDS Ak X AR 1772 SEC A5
Fig.3 Influence of Inflow TDS Variablity on SEC for
Different Design Configuration
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ARt AR B, A Y T BB B AR I T AR 8]
et T ROBEREYE A B iy RISCR A K & Y
BB RGN 44. 64% I 15 175 5 HE (1) (8]l
YR 48% ., PSP WIREFE = T SWRO, % 5 K 78
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SSP 5 PSP A Lt B 4K Tk BE I8 45 3 AR [R] 5
REFEANI WA v, FZRNE T 1 () A 145
m’/h 7K & B 2= SWRO Fifdi, miEl 1(d) 7 145
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BWRO 5 2275 43 51 %k e 38 439 s A2l , {9
IKERFERA 224 K, SWRO BT 5 F 454 1 B 8 i 1
BWRO,

I SWRO FIREFE R T SPSP, £ Z A Tk 21
ST ) ] 455 0 R Y R 0 R A K, A M [ IR
T ,SPSP H FHEH0 T 44 BWRO, RERE R & T 1
¢ SWRO, ANATARSHT , (EFf 5 1R B (9 5, SEC {H
SRR, SR K BT Y IR B R SR ) 10 C Y,
SEC {H2 B i FEAIG, £ 2K F SWRO HREFE.

55 LR AT ERA K TDS 4544, SPSP
Va7 e A TR RS Y REFRE 2 A7 1 4444 BH
e,

2.2 EEREIKEME

Kl 4 BoRTE 0.3.5 4F 3 AN ARlis E ], ek

TDS 4 32 000 mg/L( Cl™ TR 19 410 mg/L) 5%

— 130 —

'~ ,SWRO SSP (SPSP PSP 4 iz i J7 =03k 2] il
SR TS e S L

B4 32 A AE A AR [l 7 5 SRR i
Fig. 4 Influence of Operation Time Variablity on Critical
Temperatures for Different Design Configuration
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Fig. 5
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Influence of Operation Time Variablity on SEC

for Different Design Configuration
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870 m'/h 130 m*/h
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o 2240 m¥h 2 265 m¥h 255 m'/h
R ik
25 m*h
1 240 m*/h
ek
(c) 24.95%

(1) FEKIK

WE 6 s , fRFE R G ISR A=K AR | i
7K TDS A 32 000 mg/L iz B E] R 0 4444 T, C1°
AR AR T I U B 2 7 A S B A X K
Cl™ R P LR B AN W7 $2 55, SPSP %1105 X BT ik 1k 31
KSR I ST B O BTG, IRV EDE T 47 fR 7K
JEe EEAE AR B RSB, EAh, Y Gl R
FRM 60 mg/L i, SPSP A HL T SWRO X 7K i /)
TE PR 0~8 °C 524 1 o & ik & 25K O 160
mg/L i IR EEREE R 0~ 11 °C, KRZ SRR,
TRV RS A (HIFJC] i 22500

—0O—SPSp

[ —e—sWRO

O 25
™
é 20
B
& 15
10
. :
0 ' ; : : ;
60 80 100 120 140 160
PR CIER (mg L)
B 6 AIF Cl7 ¥ B /K BTEOR TN Al SRR X L

Fig. 6  Critical Temperatures Comparison for Water Quality

Requirements at Different Cl” Concentrations

(2) 3 L i)
Kl 7 RN HYJE SPSP J5 xUAE 4 Fh 43t Lo il 7k
1 000mYh
FEA
820 m*h 180 m¥/h
2 240 m*/h 2 260 m'/h 200 mi/h
20 m¥h
1 240 m*h
ek
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1 000 mi/h
ek
720 m'/h 280 m'/h
2240 m¥h 2271 m¥/h 311 m*h
31 mih
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HeAk
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B 7 4 Fhoift Lo K &1

Fig. 7 Flow Balance of Four Diversion Ratios
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SEOPAT L S B i s oK R R K
B, AR #EK TDS 32 000 mg/L 35
BF[ESA 5 4F 77K CIT s EE 120 me/L 1Y 554
T RFE R B R GUREAR R Sy 44. 46% Fi ™ K
A 1000 m*/h AAE B SWRO HiFJ& ¥ 7K 43 3t
FL B A 4 RS2,

HI 3¢ 2 AT, 4 B TT 5 58 10 7 7K 4 T b A6 4
HAIMZ 5% , I FHRBERGIN 3 °C,SWRO [EL 4 i
250.13%., {HJ& SEC 728 fbIf- T WA, SEAS f
FEAAR o SCULEH , 7= 7K 43T He A9 18 A8 Ak % i S5 it
78 Ak S R, X SWRO 11 A4 5 i 5 /)8 []
BF A5 e SEC M KA b, 76 52 B T/ v H
IR R IR I A5 R

2 SPSP 4 Rl LL BIERAES B L

Tab.2 Operation Factors Comparison of SPSP Four

Diversion Ratios

WiH 14.29%  19.61%  24.95%  30.16%

I SR/ C 24 27 30 33
SEC/(kW-h-m™)  4.16 4.137 4.141 4.188
SWRO [m] iy 5 45.00%  45.13%  45.27%  45.40%

25 L BTk ,SWRO 77 7K 43 3t L A1) 2 5% v ek 2 8]
30 B ) R O R 3R
3 ZiFHEST

U AR AR A 22 5 10 43 32 B R 4R AR A
EE A 2 AT, Hodis B AR R AR
REFE
3.1 BAmAE

AMFE I LR T P2 02 PR R B 38 R G 77K
L SCRRAR | PRGBSI AR L) TR UK
K TRALIE | Ak 3R A AR A B AE PSP
A SPSP it 77 Xl T340 1 #84r BWRO, AH L T
Lg% SWRO 4855 UAA Frkg i, 24345 BWRO fit
KNG, RUKEE 126 37,7 RS 58% 18 32, U
KA W] AR FRE R, RN 150
T, a& RS AT, 4% 62.5 & m'/d, R
DesalData (45 2 2023 4% 19 48 7H 50, [ s i K
RALT B R AR T2 2% 200 4 666. 48 JT/m’
(650 EJo/m* , Fi 1 EIC=7.179 2 JCPrE) . Hn
) BWRO 7£ TR 2% H 89 7 HAX R 1. 3% , X $¢
AUE S\
3.2 HEME
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