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基于极限学习机的水资源承载力预测与优化配置方法
张帅旗∗,沙　 莎
(河南省漯河水文水资源测报分中心,河南漯河　 462300)

摘　 要　 【目的】　 水资源承载力动态多变、优化配置目标复杂、生物学算法易陷局部最优会导致预测与优化配置工作更为复

杂和困难,因此,文章提出基于混合遗传算法的区域水资源承载力预测及优化配置方法。 【方法】 　 首先,通过构建水生态足

迹模型量化区域水资源供需关系,包括生态、生产和生活三类用水,并引入全球水均衡因子等参数。 其次,利用极限学习机的

高效学习能力,以水生压力指数为输入,预测区域水资源承载力,为后续优化配置提供基础。 在水资源优化配置阶段,综合考

虑生态、经济和社会目标,构建水资源优化配置目标函数,旨在降低污染物排放、提高经济效益和最小化区域缺水量。 为了求

解水资源优化配置问题,引入混合遗传算法,结合改进遗传算法与差分进化算法,优化选择、交叉和变异算子,提高了算法的

全局和局部搜索能力,并根据适应度动态调整交叉和变异概率。 最后,通过混合遗传算法求解水资源优化配置目标函数的最

优解,实现区域水资源的优化配置。 【结果】　 文章所提方法具有较高的区域水资源承载力预测精度,且水资源优化配置污染

物排放量最低,不同区域的缺水率均控制为 2%以下。 【结论】　 该方法促进了水资源高效利用,确保了供水安全,平衡了生态

环境与经济社会发展需求,对水资源可持续利用和区域和谐发展具有重要作用。
关键词　 水生态足迹模型　 水资源承载力　 极限学习机　 水资源优化配置　 混合遗传算法
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Abstract　 [Objective]　 The
 

carrying
 

capacity
 

of
 

water
 

resources
 

is
 

dynamically
 

changing,
 

the
 

optimization
 

goals
 

are
 

complex,
 

and
 

aiological
 

algorithms
 

are
 

prone
 

to
 

local
 

optima,
 

making
 

prediction
 

and
 

optimization
 

work
 

more
 

complex
 

and
 

difficult.
 

Therefore,
 

a
 

method
  

for
 

predicting
 

and
 

optimizing
 

the
 

allocation
 

of
 

regional
 

water
 

resources
 

carrying
 

capacity
 

based
 

on
 

a
 

hybrid
 

genetic
 

algorithm
 

is
 

proposed. [Methods]　 Firstly,
 

by
 

constructing
 

a
 

water
 

ecological
 

footprint
 

model
 

to
 

quantify
 

the
 

supply
 

and
 

demand
 

relationship
 

of
 

regional
 

water
 

resources,
 

including
 

ecological,
 

production,
 

and
 

domestic
 

water
 

usage,
 

and
 

introducing
 

parameters
 

such
 

as
 

global
 

water
 

balance
 

factors.
 

Next,
 

utilizing
 

the
 

efficient
 

learning
 

ability
 

of
 

extreme
 

learning
 

machines,
 

the
 

water
 

pressure
 

index
 

was
 

used
 

as
 

an
 

input
 

to
 

predict
 

the
 

regional
 

water
 

resources
 

carrying
 

capacity,
 

providing
 

a
 

foundation
 

for
 

subsequent
 

optimization
 

of
 

allocation.
 

In
 

the
 

stage
 

of
 

optimizing
 

water
 

resource
 

allocation,
 

ecological,
 

economic,
 

and
 

social
 

goals
 

were
 

comprehensively
 

considered
 

to
 

construct
 

the
 

objective
  

function
 

of
 

water
 

resource
 

optimization
 

allocation,
 

aiming
 

to
 

reduce
 

pollutant
 

emissions,
 

improve
 

economic
 

benefits,
 

and
 

minimize
 

regional
 

water
 

shortage
 

volume.
 

In
 

order
 

to
 

solve
 

the
 

problem
 

of
 

optimizing
 

water
 

resource
 

allocation,
 

a
 

hybrid
 

genetic
 

algorithm
 

was
 

introduced,
 

combined
 

with
 

an
 

improved
 

genetic
 

algorithm
 

and
 

differential
 

evolution
 

algorithm,
 

to
 

optimize
 

the
 

selection,
 

crossover
 

and
 

mutation
 

operators,
 

improve
 

the
 

global
 

and
 

local
 

search
 

ability
 

of
 

the
 

algorithm,
 

and
 

dynamically
 

adjust
 

the
 

crossover
 

and
 

mutation
 

probabilities
 

according
 

to
 

fitness.
 

Finally,
 

the
 

optimal
 

solution
 

for
 

the
 

objective
  

function
 

of
 

optimizing
 

water
 

resource
 

allocation
 

was
 

obtained
 

through
 

a
 

hybrid
 

genetic
 

algorithm,
 

achieving
 

the
 

optimal
 

allocation
 

of
 

regional
 

water
 

resources. [Results]　 The
 

proposed
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method
  

had
 

high
 

accuracy
 

in
 

predicting
 

regional
 

water
 

resources
 

carrying
 

capacity,
 

and
 

the
 

optimized
 

allocation
 

of
 

water
 

resources
 

had
 

the
 

lowest
 

pollutant
 

emissions.
 

The
 

water
 

shortage
 

rate
 

in
 

different
 

regions
 

was
 

controlled
 

below
 

2%. [Conclusion] 　 This
 

method
  

promotes
 

efficient
 

utilization
 

of
 

water
 

resources,
 

ensures
 

water
 

supply
 

safety,
 

balances
 

ecological
 

environment
 

and
 

economic
 

and
 

social
 

development
 

needs,
 

and
 

plays
 

an
 

important
 

role
 

in
 

sustainable
 

utilization
 

of
 

water
 

resources
 

and
 

regional
 

harmonious
 

development.
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水资源作为生命之源以及经济发展的基础,其
可持续利用与优化配置对于维护生态平衡、促进经

济社会可持续发展均具有重要意义。 随着全球气候

变化和人类活动的加剧,水资源短缺、水污染和水生

态退化等问题日益凸显,特别是在一些水资源本就

紧张的区域,这些问题更加突出[1-2] 。 因此,如何科

学预测区域水资源承载力,并在此基础上实现水资

源的优化配置,成为当前水资源管理与研究领域的

热点与难点问题。
目前,许多学者对此展开研究。 例如 2022 年张

金鑫等[3]将最大化部门用水效益、最小化区域缺水

量和污水排放量作为优化目标,综合考虑水资源配

置过程中的不确定因素,展开水资源优化配置。 但

该方法最大化部门用水效益和最小化区域缺水量之

间存在内在冲突,导致水资源配置效果不理想。 赵

金淼等[4]将遥感数据作为依据,建立空间降雨量数

据集,以经济效益作为目标,在非线性优化模型框架

内耦合作物水分生产函数、模糊可行性约束规划,从
而建立水资源优化配置模型。 但该方法模型中的参

数(如作物水分生产函数的系数、模糊可行性约束

的阈值等)往往难以准确获取且涉及多个参数和变

量,模型结构复杂,求解难度较大,对模型配置效果

产生不利影响。 2023 年潘月等[5]通过 Lasso 算法对

区域需水量展开预测,根据预测结果建立水资源优

化配置模型,引入 LINGO 语言实现模型求解,完成

水资源优化配置。 但 Lasso 算法的预测精度受到多

种因素的影响,包括数据质量、模型复杂度、变量间

的相关性等,若需水量预测结果不准确会直接导致

水资源配置质量下降。 2022 年 Li 等[6] 分析了区域

水资源的变化规律,并将其作为依据,综合考虑环境

可持续性、经济效率与社会福祉,从而建立水资源优

化配置模型。 但水资源状况不是固定的,该方法难

以完全捕捉和适应这些动态变化,导致模型在实际

应用中的准确性和可靠性受限。 且数据收集、整理、
分析需要一定时间,这导致模型使用的数据存在一

定的滞后性,影响模型的实时性和有效性。
水资源承载力作为衡量一个区域水资源可持续

利用能力的关键指标,具备动态性特征。 这种动态

性源于多方面因素的交织影响,主要包括时间因素

和空间因素。 而水资源优化配置是指在有限水资源

条件下,精准分配与高效利用水资源,以平衡多样化

的用水需求,从而实现推动社会经济繁荣发展与生

态环境保护的双重目标。 然而,水资源优化配置的

目标往往复杂且多样化,包括保障供水安全、促进经

济发展、保护生态环境等多个方面。 这些目标之间

往往存在相互冲突和制约的关系,使得水资源优化

配置问题成为一个多目标、多约束的复杂优化问题,
为此,提出基于极限学习机的水资源承载力预测与

优化配置方法。 首先,基于水生态足迹模型计算水

生压力指数,该指数能够量化人类活动对水资源系

统的影响,评估水资源可持续性,为水资源承载力预

测提供基础数据,同时识别出水资源压力较大的关

键区域。 随后,运用极限学习机这一快速、高效的神

经网络算法,通过训练捕捉水资源承载力与各种影

响因素之间的复杂关系,实现区域水资源承载力的

准确预测,为水资源管理提供科学依据。 接着,构建

目标函数,明确水资源优化配置的目标,包括最小化

污染物排放、最大化经济效益及最小化缺水量,以此

指导优化过程,平衡多个目标,确保优化方案在经济

效益、环境保护和水资源供应之间取得平衡。 最后,
通过混合遗传算法求解目标函数,该算法结合遗传

算法和其他优化技术的优点,具有全局搜索能力和

高效求解的特点,能够快速找到最优的水资源配置

方案,提高配置效率,适用于各种复杂的水资源优化

配置问题。
通过本研究以期提高水资源承载力预测的精度

和效率,并为水资源管理和优化配置提供科学依据

和技术支持,推动水资源的可持续利用,实现经济效

益和社会效益的最大化,为区域水资源管理提供新

的思路和方法。
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1　 基于极限学习机的区域水资源承载力
预测

水资源承载力预测有助于识别水资源的供需矛

盾,指导水资源的合理分配,确保关键领域(如农

业、工业、生活用水和生态用水)的水资源需求得到

满足,同时有利于避免过度开发和浪费,对于后续区

域水资源优化配置具有重要意义。
首先划分区域用水单元,将其分为 3 类:第一类

为生态用水;第二类为生产用水;第三类为生活用

水。 建立水生态足迹模型[7-8] ,如式(1)。

REFω
= Nefω

= NτW
Aω

(1)

其中:N ———人口总数,人;
REFω

———水生态足迹,m3;
τ ———全球水均衡因子;
efω

———年均水生态足迹,m3 / (人·a);

Aω ———全球水平均生产能力,m3 / (hm2·a);
W———区域平均水消耗量,m3 / 人。

该模型反映了区域水资源的使用情况,适应性

较强,因为它考虑了全球和区域 2 个层面的水资源

利用情况,有助于识别区域水资源的相对稀缺性。
在水生态足迹模型的基础上对区域水生态承载

力展开计算,如式(2)。

RECω
= Necω

= 0. 4 × ηQ
Aω

(2)

其中:Q ———水资源总量,m3;
η ———水产量因子;
RECω

———区域水生态承载力,hm2;

ecω
———平均水生态承载力,hm2 / 人。

通过水资源总量和水产量因子来计算区域水生

态承载力,反映了区域水资源的可持续供给能力,这
对于制定水资源管理政策至关重要,因为它能够揭

示区域水资源的最大可持续利用量。
水资源需求与水生态供给之间的关系可通过水

生压力指数 ι 反映,该指数通过比较水生态足迹和

水生态承载力来评估区域水资源压力,有助于识别

区域是否面临生态赤字、维持生态平衡或呈现生态

盈余,为水资源管理提供了重要的决策依据。 具体

如式(3)。

ι =
REFω

RECω

=
efω

ecω

(3)

当 ι > 1. 1 时,区域面临生态赤字;当 0. 9 < ι≤
1. 1 时,区域维持生态平衡;当 0 ≤ ι ≤ 0. 9 时,区域

呈现生态盈余。 该数值取值区间是基于对不同区域

水资源压力和生态状况的综合分析得出的。 首先,
采集相关数据,采集到的数据涵盖水资源需求数据

(如经济活动用水、人口相关用水、农业用水数据)、
水生态供给数据(气象数据、水资源量数据、生态用

水数据)以及生态状况数据(生物多样性、生态系统

服务功能、生态系统弹性和恢复力数据)。 其次,构
建数据分析与模型,先通过相关性分析找出关键影

响因素,再构建如系统动力学模型等数学模型模拟

水资源压力与生态状况关系,并利用历史数据校准

和验证模型。 之后进入数值范围确定阶段,运用模

型设置不同情景模拟,对模拟结果聚类分析确定不

同生态状态的阈值范围,邀请多领域专家评估调整。
最后,在多地区应用验证并完善,形成适用于不同地

区和时间尺度的通用数值范围,为水资源管理提供

科学决策依据。
可持续发展的核心是实现经济、社会和环境的

协调发展。 在水资源管理方面,确保水资源的可持

续利用是实现可持续发展目标的重要一环。 通过界

定水生压力指数的区间数值,可以为制定合理的水

资源管理政策提供科学依据,有助于推动水资源的

可持续利用和生态系统的保护。 该定义的区间数值

的准确性和合理性证明如下。
1)生态赤字的界定( ι > 1. 1):当 ι > 1. 1 时,

表明水资源处于不可持续利用状态。 为了更严格地

界定生态赤字,即水资源短缺到严重影响生态平衡

的程度,可以选择一个略高于 1 的阈值,如 1. 1。 这

个值的选择是基于对生态系统敏感性和恢复力的考

虑,认为当水资源需求超过供给 10%时,生态系统

可能面临较大的压力,难以维持其正常功能。
2)生态平衡的界定( 0. 9 < ι ≤ 1. 1):在这个区

间内,水生态足迹和生态承载力基本保持平衡。 选

择 0. 9 作为下限,是考虑到生态系统具有一定的弹

性和恢复力,能够在一定范围内承受水资源供需的

波动。 同时,1. 1 作为上限,确保了当水资源需求接

近但不超过供给时,生态系统仍能保持相对稳定。
3)生态盈余的界定( 0 ≤ ι≤ 0. 9):在这个区间
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内,水生态足迹小于生态承载力,表明水资源供给充

足,能够满足生态系统的需求,并有一定的余量。 选

择 0. 9 作为上限是为了确保当水资源供给远超过需

求时,能够明确地区分出生态盈余的状态。
然后基于混合遗传算法的区域水资源承载力预

测及优化配置方法将水生压力指数 ι 作为输入样本

x, 采用极限学习机[9-10] 对区域水资源承载力展开

预测。 极限学习机作为一种快速、高效的神经网络

模型,适用于处理大规模数据集和复杂非线性问题。
在水资源承载力预测中,其可以通过学习水生压力

指数与水资源承载力之间的关系,提供准确的预测

结果。 极限学习机如图 1 所示。

　 注:f(x)—输出区域水资源承载力预测结果;
Wi—输入层与隐藏层的连接权重;βi—隐藏层

与输出层的连接权重。

图 1　 极限学习机

Fig. 1　 Extreme
 

Learning
 

Machine

将水生压力指数输入极限学习机中, f( ι) 如式

(4)。

f( ι) = ∑
K

i = 1
βig(Wiι + bi) (4)

其中:K ———节点在网络隐藏层中的数量,个;
g(x) ———激活函数;
bi ———偏置。

2　 区域水资源优化配置
2. 1　 目标函数

根据上述获得的区域水资源承载力预测结果,
从生态、经济和社会 3 个方面构建区域水资源优化

配置目标函数,以此实现区域水资源优化配置。
1)水资源是生态系统的核心组成部分,其合理

配置关系到生态系统的健康和稳定。 因此,将生态

优化目标函数纳入水资源优化配置中,可以确保水

资源的利用不会超出生态系统的承载能力,从而实

现生态环境保护的同时维护生态平衡。 建立生态优

化目标函数 f1, 该函数的目标是降低污染物在区域

内的总排放量[11-12] ,如式(5)。

f1 = min∑
L

l = 1
∑

J

j = 1
∑

I

i = 1
(xl

ijal
jϕl

j) (5)

其中:ϕl
j ———污染因子比例;

L ———子区域数量,个;
I ———供水水源;
J ———用户类型;
xl
ij ———水源 i 向区域 l 内存在的用户 j 提

供的供水量,m3;
al
j ———污水排放系数。

2)水资源是经济发展的基础资源之一,其高效

利用和合理配置有助于提升经济效益,推动区域经

济发展。 因此,将经济优化目标函数作为水资源优

化配置的一部分,可以引导水资源向高效益领域流

动,实现区域经济的可持续发展。 将最大化区域经

济效益作为经济目标,建立经济优化目标函数 f2,
如式(6)。

f2 = max∑
L

l = 1
∑

J

j = 1
[∑

I

i = 1
(δlij - vlij)xl

ijβl
i ] χ ljξl (6)

其中:βl
i ———供水次序系数;

δlij ———单位效益系数,元 / m3;
ξl ———区域的权重系数;
vlij ———水源 i 为用户 j 供水过程中产生的

成本系数,元 / m3;
χ l
j ———用水公平系数。

在水资源优化配置的经济目标函数中,各个系

数的取值对于确保模型计算的准确性和结果的合理

性至关重要。 具体而言,供水次序系数应根据水源

的可靠性、水质以及用户的紧急程度或重要性等因

素来确定,用以表示不同水源或用户之间的供水优

先级。 单位效益系数则反映了每立方米水所能产生

的经济效益,其取值应基于不同用户或行业用水的

实际经济效益来确定,通常为一个正数。 区域的权

重系数用于衡量不同区域在水资源优化配置中的相

对重要性,其取值应综合考虑区域的经济规模、人口

数量、水资源短缺程度等因素,确保所有区域的权重

系数之和等于 1。 此外,水源为用户供水过程中产
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生的成本系数也是一个重要的参数,它表示从水源

取水并输送到用户过程中所产生的成本,其取值应

基于取水、输水、处理等环节的实际成本来确定。 最

后,用水公平系数用于衡量水资源在不同用户或区

域之间的分配是否公平,其取值需要基于社会公平、
水资源短缺程度、用户需水紧迫性等因素。

3)水资源是人民生活的必需品,其配置直接关

系到人民的用水需求和生活质量。 因此,将社会优

化目标函数纳入水资源优化配置中,可以确保水资

源的公平分配,稳定供应性和用水需求,提高社会满

意度和稳定性。 建立社会优化目标函数 f3, 该函数

的主要优化目标是最小化区域缺水量,如式(7)。

f3 = min∑
L

l = 1
∑

J

j = 1
(Dl

j - ∑
I

i
xl
ij ) (7)

其中:Dl
j ———用户 j 在区域 l 内的需水量,m3。

综上,生态、经济、社会 3 个方面相互关联、相互

影响,共同构成了水资源优化配置的综合评估体系。
其中,生态方面关注水资源的可持续利用和生态环

境的保护,为水资源优化配置提供了基础和前提;经
济方面则着眼于水资源的经济效益和区域经济发

展,成为水资源优化配置的重要目标之一;而社会方

面则重视水资源的公平分配和人民的生活质量,为
水资源优化配置提供了重要保障。 通过综合考虑这

3 个方面,可以对水资源优化配置进行全面、客观、
科学的评估,确保水资源的可持续利用、生态系统的

健康稳定、区域经济的可持续发展以及人民生活质

量的提升,因此这 3 个方面是衡量水资源优化配置

效果不可或缺的重要参考依据。 由于这 3 个方面的

结果往往具有不同的量纲和取值范围,直接进行比

较或加权求和是不合适的。 因此,在进行综合评估

之前,需要对这些目标函数值进行归一化处理。 归

一化处理的目的是将不同量纲的数据转换到同一尺

度上,使得其可以相互比较和加权。 采用线性归一

化方法,如式(8)。

y =
x - xmin

xmax - xmin
(8)

其中:x ———原始数据;
y ———归一化后的数据;
xmin ———原始数据中的最小值;
xmax ———原始数据中的最大值。

对于生态、经济、社会 3 个方面的目标函数值,
可以分别应用上述公式进行归一化处理。 归一化后

的生态优化、经济优化、社会优化目标函数 f′1、 f′2、
f′3 将具有相同的尺度,可以直接进行比较和加权求

和,从而建立水资源优化配置目标函数 F 如式(9)。

F = w1 f′1 + w2 f′2 + w3 f′3 (9)

其中:w1、w2、w3———权重系数,它们反映了不

同目标在综合优化中的重要程度, 且

w1 + w2 + w3 = 1。
综合考虑区域水资源管理需求,设置下述约束

条件。
①供水量约束 f( ι)如式(10)。

∑
L

l = 1
∑

J

j = 1
∑

I

i = 1
xl
ij < f( ι) (10)

②需水量约束如式(11)。

D jmin ≤ ∑
I

i = 1
xij ≤ D jmax (11)

其中:D jmin、D jmax ———用户 j 的需水量下限与

上限。
2. 2　 基于混合遗传算法的水资源优化配置

将改进遗传算法与差分进化算法相结合,提出

混合遗传算法,获取 2. 1 节建立的目标函数的最优

解,完成区域水资源的优化配置。 传统的单目标优

化算法只能求解一个目标函数的最优解,而在多目

标优化问题中,需要找到一组解,使得这些解能够尽

可能地满足多个目标函数。 混合遗传算法则能够利

用改进遗传算法与差分进化算法的全局搜索能力,
有效地解决多目标优化问题。 该算法通过选择、交
叉、变异等遗传操作,不断迭代优化种群中的个体,
以寻求最优的水资源配置方案。 混合遗传算法不仅

具有强大的全局搜索能力,还能在保持种群多样性

的同时,快速收敛到最优解,为区域水资源优化配置

提供了有力支持。 具体过程如下。
1)选择算子

改进目前算法中的选择算子,根据适应度计算

结果在种群中挑选前 S 个个体,随机在 S 个个体内

再挑选 s 个个体,并将其作为依据,挑选其中存在的

最优个体,将其作为下一步交叉操作的父代个体。
2)交叉算子

在交叉过程中通过两点交叉策略随机挑选 2 个
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交叉点,并展开基因交换。 交叉算子在算法求解过

程中的主要作用是控制个体的全局搜索能力,经调

查发 现, 全 局 搜 索 能 力 与 交 叉 概 率 之 间 成 正

比[13-14] 。 为了提高种群在求解过程中的多样性,在
函数求解前期通常增大交叉概率,在后期种群逐渐

接近最优解,此时降低交叉概率。 在水资源优化配

置目标函数求解过程中,通过式(12)确定种群 c 的

交叉概率 Pc。

Pc = Pc0 -
fc,min × (Pc0 - Pc,min)

Ffavg
(12)

其中:fc,min、 favg ———适应度对应的下限与均值;
Pc,min ———最小交叉概率;
Pc0———种群在函数求解初始阶段对应的

交叉概率。
3)变异算子

经调查发现变异算子可决定种群在求解状态下

的局部搜索能力,为了提高种群在求解初始阶段的

多样性,需要增大变异概率。 为了提高算法的收敛

性,在函数求解后期需要降低变异概率。 设 T 表示

最大迭代次数,所提方法通过式(13)计算交叉后的

种群 m 在水资源优化配置目标函数求解过程中的

变异概率 Pm。

Pm = Pm0 -
t × (Pm0 - Pmmin)

T
+
Pm0 favg

Pc fmin
(13)

其中: Pm0———种群在初始阶段对应的变异

概率;
fmin———种群最小适应度;
t ———当前种群对函数求解的次数,次;
Pmmin ———变异概率的下限。

完成遗传算法的优化后,将其与差分进化算法

结合,提出一种整体性能较高的混合遗传算法,采用

混合遗传算法求解水资源优化配置目标函数的具体

过程如下:
①根据水资源优化配置目标函数以及约束条件

创建初始种群,并对相关参数展开初始化;
②将遗传算法生成的种群作为基础,参照其种

群数 量 与 规 模, 引 入 差 分 进 化 算 法 生 成 新 种

群[15-16] ,并将 2 个种群混合,建立用于求解水资源

优化配置目标函数的混合种群;
③对混合种群求解水资源优化配置目标函数的

适应度展开计算,根据计算结果排序种群,删除后一

半适应度较差的种群;
④利用优化后的算子对种群展开相应的选择、

交叉和变异操作,生成新种群;
⑤在约束条件下确定新种群的适应度值,同时

对当前种群求解水资源优化配置目标函数的次数展

开记录,当其达到混合遗传算法的最大迭代次数时,
输出水资源优化配置目标函数的最优解,具体的计

算如式(14)。

xi =
Pc + Pm

2
× F(ci + bi) (14)

其中:ci,bi ———第 i 个用水单元的单位成本、单
位效益,元 / m3;
xi———水资源优化配置目标函数的最

优解。
综上,基于混合遗传算法的区域水资源承载力

预测及优化配置方法结合了水生态足迹模型、极限

学习机和混合遗传算法,形成了一套系统化的水资

源管理策略。 该方法适用于多种类型的区域,特别

是那些面临水资源供需矛盾、需要科学合理地进行

水资源管理和配置的区域。 该方法首先融合了水生

态足迹模型和极限学习机,通过构建水生态足迹模

型来量化区域水资源的供需关系,进而利用极限学

习机的高效学习能力进行水资源承载力的预测。 这

种多模型融合的策略不仅提高了预测的精度和效

率,还为水资源承载力预测提供了新的研究视角和

方法路径。 在水资源优化配置阶段,进一步引入了

混合遗传算法,该算法通过结合改进遗传算法与差

分进化算法,实现了算法性能的优化。 通过优化选

择、交叉和变异算子,混合遗传算法在求解复杂的水

资源优化配置问题时表现出了更高的全局搜索能力

和局部搜索能力,从而能够找到更优的解。 此外,该
方法在构建区域水资源优化配置目标函数时,综合

考虑了生态、经济和社会 3 个方面的目标,形成了一

个全面而综合的优化框架,这有助于在保障水资源

可持续利用的同时,实现经济效益和社会效益的最

大化。 同时该方法还通过动态调整交叉概率和变异

概率来适应不同阶段的求解需求,这种动态调整策

略提高了算法的适应性和收敛性,使得算法在求解

复杂问题时更加高效和稳定。 因此,该方法在融合

多模型预测、目标函数构建、参数动态调整等方面均
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展现出了创新性,为区域水资源承载力预测和优化

配置提供了新的思路和方法。
3　 试验与分析

为了验证基于极限学习机的水资源承载力预测

与优化配置方法的整体有效性。 本研究选取某典型

流域作为研究区域,该区域总面积约为 5
 

000
 

km2,
涵盖了山地、平原和丘陵等多种地形地貌。 气候类

型属于温带季风气候,四季分明,年均降水量约为

600
 

mm,降水主要集中在夏季。 区域内河流众多,
是当地农业灌溉、工业生产和生活用水的主要来源。
近年来,随着经济的快速发展和人口的不断增长,该

区域的水资源供需矛盾日益突出,尤其是在干旱年

份,水资源短缺问题尤为严重。 因此,对该区域的水

资源承载力进行预测及优化配置研究具有重要的现

实意义。 本次测试的数据源如下。
(1)水文数据:地下水位、径流量、降雨量,共

2
 

564 条数据。
(2) 社会经济数据: 用水量、 国内生产总值

(GDP)、人口,共 5
 

268 条数据。
(3)环境数据:污染物排放量、水质监测数据,

共 6
 

351 条数据。
本次测试的试验平台如图 2 所示。

图 2　 试验平台

Fig. 2　 Test
 

Platform

采集研究区域 2010 年—2013 年的水文数据,
用于水资源承载力预测测试,逐年预测 2014 年—
2023 年的水资源承载力。 其中参数取值如下:根
据研究区域的历史数据和实际情况平均水生态足

迹为 500
 

m3 / ( 人· a) ,全球水平均生产能力为

1
 

000
 

m3 / ( hm2 ·a) ,这一数据来源于国际水资源

管理组织,用于衡量全球范围内水资源的平均生

产能力。 全球水均衡因子取 0. 8。 极限学习机部

分,采用 Sigmoid 函数作为激活函数,隐藏层节点

数量为 50 个,连接权重通过训练自动确定。 采用

所提方法和 Lasso 算法展开水资源承载力预测测

试,如图 3 所示。
图 3 中的实际承载力通过研究区域的历史水文

数据、社会经济数据以及环境数据计算得到。 由图

图 3　 水资源承载预测结果

Fig. 3　 Prediction
 

Results
 

of
 

Water
 

Resources
 

Carrying
 

Capacity

3 可知,所提方法的水资源承载力预测结果与实际

结果相符,Lasso 算法的水资源承载力预测结果存在

一定的偏差。 这是由于所提方法利用极限学习机的

高效学习能力,以水生压力指数为输入,对区域水资

源承载力进行预测。 极限学习机作为一种快速、简
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单的神经网络算法,能够高效地处理大量数据,提取

关键信息,从而提高预测的准确性和效率。 由此可

知,所提方法可为后续水资源优化配置提供可靠的

数据依据。
在区域水资源优化配置过程中,污水排放系数

设为 0. 1,供水次序系数为 1. 2,单位效益系数分别设

定农业用水为 0. 5 元 / m3,工业用水为 1. 0 元 / m3,生
活用水为 1. 5 元 / m3,区域权重系数为 0. 5,水源供

水成本系数中地下水为 0. 3 元 / m3,地表水为 0. 2
元 / m3,用水公平系数设为 1. 0。 设置混合遗传算法

的相关参数:种群大小为 50;迭代次数为 200 次;交
叉概率为 0. 7;变异概率为 0. 01。

选取传统遗传算法作为对比算法,展开收敛性

能测试,结果如图 4 所示。

图 4　 收敛性能测试

Fig. 4　 Testing
 

of
 

Convergence
 

Performance

由图 4 可知,在收敛性能测试过程中,混合遗传

算法在迭代次数 40 次后曲线趋于稳定,而传统遗传

算法在迭代次数 80 次后曲线趋于稳定,由此说明混

合遗传算法优于传统遗传算法,这是因为混合遗传

算法在传统遗传算法的基础上融合了差分进化算

法,这样提升了种群在解空间中的多样性探索,增强

了全局最优解的搜索效能。
选取污染物排放量和缺水率作为评价指标,

采用基于极限学习机的配置方法、基于不确定模

糊 多 目 标 规 划 ( interval
 

fuzzy
 

muti-objective
 

programning,IFMOP)的配置方法以及基于遥感数

据的配置方法对 10 个区域的水资源展开优化配

置,通过上述指标展开配置效果评价,配置结果如

表 1 和图 5 所示。
由表 1 可知,采用上述方法对不同区域展开水

资源优化配置时,所提方法的污染物排放量均是最

低的,因为所提方法在水资源优化配置过程中将污

染物排放最小作为优化目标展开水资源配置,可有

效保护水生态环境。
表 1　 污染物排放量(单位:t)

Tab. 1　 Discharge
 

Level
 

of
 

Pollutants(Unit:
 

t)

区域

编号

污染物排放量

基于极限学习

机的配置方法

基于 IFMOP
的配置方法

基于遥感数据

的配置方法

1 25
 

164. 2 29
 

611. 2 31
 

516. 7

2 21
 

548. 6 30
 

021. 5 32
 

650. 5

3 24
 

621. 5 28
 

891. 6 29
 

945. 1

4 23
 

561. 7 27
 

516. 9 33
 

215. 7

5 20
 

346. 9 31
 

526. 8 35
 

789. 2

6 24
 

891. 3 32
 

548. 4 36
 

514. 9

7 22
 

516. 4 29
 

945. 1 33
 

517. 4

8 23
 

648. 2 28
 

642. 4 31
 

125. 6

9 21
 

123. 7 32
 

315. 3 32
 

648. 8

10 20
 

516. 5 31
 

254. 8 34
 

582. 4

为了进一步验证所提方法的实际应用性,采用

上述 3 种方法优化后,对不同区域的缺水率进行统

计,数值越大说明缺水情况越严重,水资源供需矛盾

越突出。 缺水率 X 计算如式(15)。

X = D - G
D

× 100% (15)

其中:D ———需水量,表示某一区域或时间段内

对水的总需求量,m3;
G ———供水量,表示同一区域或时间段内

实际能够提供给用户的水量,m3。
由于缺水率是通过需水量减去供水量后除以需

水量计算得出的,因此其值始终为正数。 当供水量

等于需水量时,缺水率为 0,表示供需平衡;当供水

量小于需水量时,缺水率大于 0,表示存在缺水情

况,且数值越大说明缺水情况越严重,水资源供需矛

盾越突出。 采用上述 3 种方法优化后的区域缺水率

结果如图 5 所示。
由图 5 可知,经过所提方法优化后,不同区域的

缺水率均控制在 2%以下,表明经过所提方法配置

后,区域供水量基本满足需水量,水资源达到供需平

衡状态,但基于 IFMOP 的配置方法以及基于遥感数

据的配置方法的缺水率相对较高,无法满足区域需

水量,配置效果较差。 由此说明所提方法的配置效
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图 5　 缺水率

Fig. 5　 Water
 

Deficiency
 

Rate

果更佳。
4　 结论

资源优化配置通过科学规划和管理,确保水资

源在农业、工业、城市生活及生态环境等不同领域之

间的合理分配,最大化水资源的利用率。 针对目前

水资源优化配置方法存在的问题,提出基于混合遗

传算法的区域水资源承载力预测及优化配置方法,
该方法根据区域水资源承载力预测情况建立水资源

优化配置目标函数,通过混合遗传算法实现水资源

的优化配置,经验证,所提方法可准确地完成水资源

承载力预测,为水资源优化配置提供精确数据支持。
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