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摘　 要　 【目的】　 针对传统漏损监测与处理方法在多独立计量区域( DMA)小区漏损预警应用中存在处理优先级难以明确

的问题,提出一种基于数据场聚类的 DMA 小区漏损分级预警方法,旨在提升多个 DMA 小区漏损处理的时效性与准确性,为
水务企业多 DMA 小区漏损情况下的处理优先级方案。 【方法】 　 首先,通过 Z-score 与主成分分析( PCA)对漏损率异常的

DMA 小区的日均异常漏损率、日均异常漏损量、最小夜间流量、最小夜间流量 / 日流量共 4 个指标进行数据标准化和降维处

理,提取前 2 项主成分作为聚类特征;其次,结合数据场理论构建高斯势函数,利用遗传算法优化辐射因子,并基于势熵最小化

原则确定最优聚类参数;最后,根据势值分布划分漏损预警等级,并引入持续时长机制实现动态预警。 【结果】 　 基于 L 市 30
个 DMA 小区的漏损数据试验表明:该方法聚类效果显著,成功将漏损事件划分为 5 个聚类预警级别,其中 1 级预警占比为

73. 3%(22 个小区),5 级预警仅为 3. 3%(1 个小区),符合现实情况;动态预警机制与实际工作环境相融合,提高了漏损处理的

效率。 【结论】　 本文方法通过数据场聚类与动态机制融合,能够精准划分漏损等级并实现实时动态预警。 实际应用中可为

水务企业提供漏损处理的优先级决策依据,推动供水管网管理向数字化、精细化方向升级。
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Abstract　 [Objective] 　 To
 

solve
 

the
 

problem
 

that
 

the
 

priority
 

of
 

traditional
 

leakage
 

monitoring
 

and
 

processing
 

method
  

in
 

the
 

application
 

of
 

multi
  

district
 

metering
 

area
 

( DMA)
 

community
 

leakage
 

early
 

warning
 

is
 

difficult
 

to
 

determine,
 

a
 

DMA
 

community
 

leakage
 

hierarchical
 

early
 

warning
 

method
  

based
 

on
 

data
 

field
 

clustering
 

is
 

proposed,
 

aiming
 

to
 

improve
 

the
 

timeliness
 

and
 

accuracy
 

of
 

multiple
 

DMA
 

community
 

leakage
 

processing,
 

and
 

to
 

provide
 

a
 

priority
 

scheme
 

for
 

water
 

enterprises
 

in
 

the
 

case
 

of
 

multi
 

DMA
 

community
 

leakage. [ Methods] 　 Firstly,
 

through
 

Z-score
 

and
 

principal
 

component
 

analysis
 

( PCA),
 

data
 

standardization
 

and
 

dimensionality
 

reduction
 

were
 

performed
 

on
 

the
 

four
 

indicators
 

of
 

DMA
 

communities
 

with
 

abnormal
 

leakage
 

rate,
 

abnormal
 

leakage
 

amount,
 

minimum
 

night
 

flow,
 

and
 

minimum
 

night
 

flow / daily
 

flow,
 

and
 

the
 

first
 

two
 

principal
 

components
 

were
 

extracted
 

as
 

clustering
 

features;
 

Secondly,
 

the
 

Gaussian
 

potential
 

function
 

was
 

constructed
 

based
 

on
 

the
 

data
 

field
 

theory,
 

the
 

radiation
 

factor
 

was
 

optimized
 

using
 

genetic
 

algorithm,
 

and
 

the
 

optimal
 

clustering
 

parameters
 

were
 

determined
 

based
 

on
 

the
 

principle
 

of
 

minimizing
 

the
 

potential
 

entropy;
 

Finally,
 

according
 

to
 

the
 

potential
 

distribution,
 

the
 

leakage
 

warning
 

level
 

was
 

divided,
 

and
 

the
 

duration
 

mechanism
 

was
 

introduced
 

to
 

achieve
 

dynamic
 

warning. [Results] 　 Based
 

on
 

the
 

leakage
 

data
 

of
 

30
 

DMA
 

communities
 

in
 

L
 

City,
 

the
 

experiment
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showed
 

that
 

the
 

clustering
 

effect
 

of
 

this
 

method
  

was
 

remarkable,
 

and
 

the
 

leakage
 

events
 

were
 

successfully
 

divided
 

into
 

five
 

cluster
 

warning
 

levels,
 

of
 

which
 

the
 

first
 

level
 

warning
 

accounts
 

for
 

73. 3%
 

(22
 

communities),
 

and
 

the
 

fifth
 

level
 

warning
 

only
 

accounts
 

for
 

3. 3%
 

(1
 

community),
 

which
 

was
 

in
 

line
 

with
 

the
 

reality;
 

The
 

dynamic
 

early
 

warning
 

mechanism
 

was
 

integrated
 

with
 

the
 

actual
 

working
 

environment
 

to
 

improve
 

the
 

efficiency
 

of
 

leakage
 

treatment. [ Conclusion] 　 Through
 

data
 

field
 

clustering
 

and
 

dynamic
 

mechanism
 

fusion,
 

this
 

method
  

can
 

accurately
 

classify
 

leakage
 

levels
 

and
 

achieve
 

real-time
 

dynamic
 

early
 

warning.
 

In
 

practical
 

application,
 

it
 

can
 

provide
 

priority
 

decision-making
 

basis
 

for
 

leakage
 

treatment
 

for
 

water
 

enterprises,
 

and
 

promote
 

the
 

upgrading
 

of
 

water
 

supply
 

pipe
 

network
 

management
 

in
 

the
 

direction
 

of
 

digitalization
 

and
 

refinement.
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在城市化浪潮奔涌向前的当下,供水管网漏损

问题已然成为水务行业亟待攻克的难关。 相关数

据[1]揭示,全国范围内,每年因管网漏损而浪费的

水资源高达数十亿 m3,这无疑加剧了水资源的短缺

困境,同时致使供水企业的运营成本攀升至高位。
在此背景下,独立计量区域(DMA)技术凭借精细化

管理的显著优势,被广泛应用于漏损监测与控制领

域[2] 。 然而,传统漏损检测方法在 DMA 小区的应

用过程中,暴露出诸多问题,如诊断存在延迟、预警

效果欠佳等,这使得探索更为高效的漏损预警技术

迫在眉睫。
当前,学术界针对 DMA 漏损检测展开了深入

研究, 提 出 了 多 种 方 法。 基 于 最 小 夜 间 流 量

(minimum
 

night
 

flow,MNF)的定额法与比例法,虽然

能快速锁定存量漏损[3-5] ,但对于新增漏损的判定,
却需依赖流量分布法的辅助,导致实时性不足[6] ;
组合流量法通过融合全天流量与 MNF 数据,将漏损

诊断准确率提升至 91. 28%[1] ,但其阈值矩阵的构

建过度依赖人工经验,难以契合动态数据变化的节

奏。 随着科技的进步,为突破传统方法的局限,数据

挖掘与机器学习技术逐渐被引入该领域[7] 。 基于

粒子群优化的最小二乘支持向量机模型,借助预测

误差分布实现漏损检测,但其模型训练过程对大量

标注数据存在过度依赖,难以迅速应对突发性漏

损[8] ;遗传算法在优化反向传播( back
 

propagation,
BP)神经网络参数方面表现卓越,能够显著提升漏

失定位的收敛速度与精度[9] ,但此类监督学习方法

对数据完备性的要求过高。 基于概率分布模型的漏

损分级预警方法指标相对单一,难以考虑综合情

况[10] 。 聚类和自编码器等无监督方法,近年来也被

应用于分级预警和异常检测[11-13] 。 然而,传统聚类

算法在处理高维、非线性流量数据时,易受噪声干

扰,致使聚类效果不尽如人意。 尽管 K 均值(KS)聚

类算法通过引入形状距离度量,在一定程度上提升

了聚类精度[14] ,但其参数选择缺乏自适应性,限制

了其在实际应用中的推广范围。 主成分分析

(PCA)作为经典的降维技术,在提取流量数据关键

特征方面具有显著优势[15] ,但现有研究多聚焦于静

态数据分析,对于动态预警机制的探索相对匮乏。
鉴于上述问题,本文创新性地提出一种基于数

据场聚类的 DMA 小区漏损分级预警方法。 首先,
运用 Z-score 标准化与 PCA 对多维度漏损指标进行

降维处理,精准提取关键特征;其次,结合数据场理

论构建势函数,借助遗传算法优化辐射因子,并依据

势熵最小化原则确定最优聚类参数;最后,基于势值

分布划分漏损预警等级,并引入持续时长机制,实现

动态预警。
1　 研究方法
1. 1　 数据预处理

将漏损率异常的 DMA 小区挑选出来,用于漏

损分级预警。 DMA 小区管网漏损和多个指标有关,
其中日均 MNF、日均 MNF / 日均流量、日均漏损水

量、日均漏损率是最常用的 4 个指标。
1. 1. 1　 Z-score 标准化处理

首先,每个指标之间数值相差较大,本文用 Z-
score 方法进行标准化处理,如式(1) ~式(2)。

z =
xi - μ

s
(1)

s = 1
m∑

m

i = 1
(xi -x-) 2 (2)

其中:z———标准分数;
xi ———样本值;
x- ———样本平均值;
μ———数据集的均值;
s———数据集的标准差;
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m———样本个数。
标准化可将输入的数据转换为均值为 0、标准

差为 1 的数据,以减少异常值对漏损异常值分类结

果的影响。
1. 1. 2　 PCA

本文利用 PCA 对日均 MNF、日均 MNF / 日均流

量、日均漏损水量、日均漏损率这 4 个指标进行特征

提取。 PCA 是一种经典的降维技术,其主要目标是

通过线性变换将高维数据投影到低维空间,提取数

据中的主要特征,减少变量之间的相关性和数据冗

余,同时保留数据的主要信息。
将输入数据构建为矩阵,如式(3),m 为 30。 每

个样本有 4 种变量,即 30 个 DMA 小区的 MNF、MNF /
日均流量、日均漏损水量以及日均漏损率数据。

X =

x11 x12 x13 x14

x21 x22 x23 x24

︙ ︙ ⋱ ︙
xm1 xm2 xm3 xm4

é

ë

ê
ê
ê
ê
êê

ù

û

ú
ú
ú
ú
úú

(3)

经标准化处理后,方差矩阵表示如式(4)。

C = 1
4
XTX (4)

为了确定协方差矩阵的主成分,采用雅可比行

列式法如式(5),计算协方差矩阵的特征值( ki )和

特征向量( λ i )。 通过迭代过程将协方差矩阵对角

化,直至满足条件 |R-λI | = 0。

| R - λI | = 0 (5)

其中:R———旋转矩阵;
I———单位矩阵;
λ ———特征向量。

将特征值 ki 排序,即 k1 > k2 > k3 > k4, 该排序

揭示了每个特征值在数据集中的重要性。 计算每个

特征值占全部特征值的总数的比例,以此确定每个

特征值的贡献率。 贡献率的计算如式(6)。

Wi =
ki

∑
4

i = 1
ki

(6)

其中:∑
4

i = 1
ki ———累计特征值;

Wi ———贡献率。

计算得到贡献度最大的 2 种特征分量可以作为

主成分,如选用第一主成分 F1、第二主成分 F2 来表

示所有漏损数据的信息,用来当作聚类属性。
1. 2　 数据场

数据场是基于物理场提出的概念,用于解决数

据挖掘和模式识别中非线性复杂问题的一种方

法[16] 。 数据场理论的基本思想源于物理学中的场

理论,将数据看作“物质点”,每个数据点根据其属

性对空间施加影响力,形成一个能够表征数据分布

特征的“场”。 这一方法能够有效地处理高维、非线

性和噪声数据,已被广泛应用于聚类分析、分类问题

和异常检测等领域。
1. 2. 1　 场强函数

为了定量描述数据场中源点对周围数据对象的

影响力度,引入了场强函数的概念。 该函数类比于

物理学中的引力和静电力公式,用以表征数据场中

源点对周围空间中其他数据对象的作用强度。 考虑

到高斯分布的普适性和短程场作用在表达数据聚类

特性时的便利性,场强函数通常定义 [ fy ( x)] 为

式(7)。

fy(x) = ρe
-d

2(x,y)

2σ2 (7)

其中:d(x,y) ———数据对象 x、y 之间的欧几里

得距离;
σ ———辐射因子;
ρ ———权重变量,在数据场的假设条件

下,所有数据点具有相同的作用能力时,
则 ρ 被设为 1。

式(7)表明,数据点 x、y 距离越近, d(x,y) 越

小,场强函数值 fy(x) 越大,表明源点 y 对周围数据

对象 x 的影响增强。 当 2 个数据点在空间上重合

时,距离为 0, d(x,y) = 0,场强函数值达到最大值,
当 2 个数据点远离时, d(x,y) 越来越大,场强函数

值逐渐减小,趋近 0,表明源点的影响随距离的增加

而减弱。 式(7)中 σ 量化了数据点对周围数据对象

的影响力度,场强函数值与 σ 成反比,σ 越小,数据

点的辐射能力越强。
1. 2. 2　 势函数

在数据挖掘领域,研究单个数据对象的场强函

数对于理解整个数据集合的全局特性具有局限性。
因此,为了深入分析数据场中各数据对象相互作用
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的总体效应,必须考察所有数据对象在空间中产生

的场强值的综合变化。 为此,引入势函数的概念,用
以表征空间中特定点 y 处,由所有数据对象共同作

用所产生的场强值累加结果。 该势函数[ϕ(y)]的

数学表达式为式(8)。

ϕ(y) = ∑
n

i = 1
fy(xi) = ∑

n

i = 1
ρe

-
d2(xi,y)

2σ2 (8)

其中:n———数据对象的总数。
式(8)表明势函数是一个高斯核函数,它将所

有数据对象在点 y 处的场强值进行叠加。 由此定义

的势函数,每个数据对象点都以自己为中心,独立地

对其周围空间施加影响,而不受外界的影响,具有独

立性;每个数据对象点的势值是所有数据对象在该

点产生的场强值的叠加总和,具有叠加性;势值随着

距离的增加急剧下降,靠近数据对象的区域具有较

高的势值,而远离数据对象的区域具有较低的势值,
具有衰减性。 势函数提供了一种量化数据场中各点

受数据对象影响强度的方法,为分析数据对象间的

相互关系和数据场的整体结构提供了一个有用的

工具。
1. 2. 3　 辐射因子及其优化

辐射因子在势函数中扮演着关键角色,它直接

影响势值的分布特征。 为了深入理解辐射因子与势

值之间的相互关系,首先考察空间中仅存在一个数

据点时的场强和势场分布。 图 1 分析了辐射因子如

何影响单个数据点在不同距离上的场强值,这些曲

线描绘了场强值随距离 d 变化的衰减特性,其中辐

射因子决定了衰减的速率。
由图 1 可知,当距离达到 2. 12σ 左右的时候,

势值几乎为 0,因此,为了方便计算,距离为 2. 12σ
的数据点的影响直接忽略不计。

当 σ 较小时,表示数据点辐射的能量集中于较

小的空间范围内,导致近场区域的势值较高,而远离

数据点的区域势值迅速减小,如图中最左侧 σ = 0. 5
的数据曲线。

相反,当 σ 较大时,数据点辐射的能量分散在

更大的空间范围内,使得势值随距离的衰减变得更

为平缓,即在较远的距离上仍然能观测到较高的势

值,如图 1 中最右侧 σ = 2 的数据曲线。
如果每个数据对象在空间中的势值大致相同,

说明数据分布具有最大的不确定性,即熵达到最大

图 1　 不同辐射因子条件下势值随距离的变化

Fig. 1　 Variation
 

of
 

Potential
 

Values
 

with
 

Distances
 

under
 

Different
 

Radiation
 

Factor
 

Conditions

值。 熵的值越大,表明系统的不确定性越高。 相反,
如果数据对象所在位置的势值差异显著或分布不

均,则不确定性较低,熵值较小。
势熵用以描述不同辐射因子对数据场的影响。

给定一组数据点 x1,x2, …,xn 的势值分别为 ψ1,
ψ2,…,ψn, 则势熵定义为式(9) ~式(11)。

H =- ∑
n

i = 1

ψi

Z
log

ψi

Z( ) (9)

Z = ∑
n

i = 1
ψi (10)

pi =
ψi

∑
n

i = 1
ψi

(11)

其中:Z ———标准化因子;
H———势熵;
ψi ———对应数据点的势值;
pi ———为数据点的归一化势值,表示数据

点 xi 在总势能中的比重,概率 pi 之和

为 1。
分析 H 的值总是介于 0 和 log(n) 之间,即 0 ≤

H ≤ log(n), 且 H = log(n)⇔ψ1 = ψ2 =… = ψn, 此时

每个 pi 都等于
1
n

, 势熵 H 达到最大值。

H 与 σ 之间的关系可以通过图 2 进行分析。 随

着 σ 的增加, H 先减小后增大。 这一现象表明存在

一个最优的 σ 值,使得 H 达到最小。 由此,为了确

定最优的 σ 值, σ 的选择问题就是 H 最小值的问
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题。 遗传算法通过模拟自然选择和遗传机制来搜索

最优解,适用于解决此类优化问题,以选择效果最好

的 σ 值。

图 2　 势熵与辐射因子变化关系

Fig. 2　 Relationship
 

between
 

Potential
 

Entropy
 

and
 

Radiation
 

Factors
 

Variation

1. 2. 4　 等势线和势心

势线和等势面是描述数据场中势能分布的几何

工具。 等势线是指连接数据场中具有相同势值的点

的平滑曲线,而等势面则是在三维空间中,由具有相

同势值的点构成的曲面,且这些点与辐射方向正交。
在数据场中,辐射能量较高的区域接近数据源节点,
即数据流的起点,导致等势面或等势线的分布更为

密集;辐射能量较低的区域,等势线或面的分布则相

对稀疏。 假设有一个二维的数据场,其中包含一个

正向辐射的源点,比如一个正电荷。 在这个数据场

中,可以画出一系列等势线,每条等势线都表示一个

特定的势值。 例如,如果将势值设为常数 ψ, 则所

有与源点距离满足式(12)的点将连成一条等势线。

ψ= 1
4π×ε0r

(12)

其中:r ———距离源点的距离;
ε0———真空电容率。

在三维空间中,这些等势线将形成一个等势面,
比如一个球面。 通过改变 ψ 的值,可以得到不同的

等势线和等势面,它们越接近源点,分布就越密集,
表明势能的变化率更高。

势场是由所有等势面或等势线覆盖数据域空间

构成的,是基于势函数叠加作用的外在表现形式。

根据场强函数定义,势场中等势线或等势面的稀疏

与稠密形象化地表示了数据的抽象度强弱关系,反
映了数据对象整体辐射能量的特征。 例如构造一个

以每个用户作为一个数据源点的社交网络的数据

场,一个等势面可能包含所有活跃度在特定范围内

的用户。 在这个势场中,等势面的稠密区域可能表

示用户活跃度较高的社区中心,而稀疏区域则可能

表示用户活跃度较低的边缘地带。
在势场中,势心是等势面或等势线分布的中心

点,单一数据对象产生的数据场,势心位于数据对象

本身的位置。 例如,一个高压系统可以被视为一个

数据源点,其辐射能量与气压大小成正比。 在这种

情况下,势心将位于高压系统的中心,即气压最高的

点。 对于由 2 个或 2 个以上的数据对象构成的数据

场,这些对象可以被归类为一个类簇,其势心靠近辐

射能量较大的数据对象的位置,且势心与重心位置

相吻合。

1. 3　 数据场聚类算法

数据场聚类算法的基本思路是通过调节参数,
将数据对象生成不同的数据场,获得不同的聚类效

果,从而满足特定的聚类目标。 该算法的基本步骤

如下。
(1)设定关键参数,如辐射因子、网格大小等。
(2)为每个数据对象构建一个数据场,该数据

场反映了数据对象在空间中的势能分布。
(3)计算数据场中每个点的势值 fy(x)。
(4)在数据场中用平滑曲线连接具有相同势值

的点生成等势线或等势面。
(5)在势场中选择势值最大的点作为聚类中

心,即为势心。
(6)根据等势线的分布,将周围的数据对象聚

集到一起,形成类簇。 剩余的数据对象可以作为离

群点处理。
(7)根据初始聚类结果,调整参数以优化聚类

效果。
(8)评估聚类结果的质量。
(9)迭代改进参数调整和聚类过程,直至获得

满意的结果。
(10)输出最终的聚类结果。
数据场聚类算法的流程图如图 3 所示,该算法

首先通过遗传算法优化辐射因子,然后构建势场并
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图 3　 数据场聚类算法流程

Fig. 3　 Flow
 

of
 

Data
 

Field
 

Clustering
 

Algorithm

生成等势线,选择势值最大的点作为聚类中心,从该

中心向外扩散形成类簇,更新待聚类数据对象数量,
并循环进行直至所有数据对象被聚类,最终输出所

有形成的类簇。 此方法利用势场中势能的分布特性

来指导聚类过程,适用于处理复杂数据结构,有效揭

示数据的内在模式。
2　 结果和讨论
2. 1　 数据场聚类算法试验数据

本文采用 L 市漏损率检测异常的 30 个 DMA 小

区的 MNF、MNF / 日均流量、日均漏损水量以及日均

漏损率数据,对数据进行标准化处理后,再用 PCA
法得到最佳的聚类分量,最后用数据场聚类法对

DMA 小区漏损处理优先级进行评价。 原始数据如

表 1 所示。
2. 2　 数据场聚类算法试验结果分析

对原始数据进行 PCA 降维得到的数据加上

DMA 小区编号,最终形成散点图,如图 4 所示。
利用 PCA 降维得到的数据根据势熵函数对辐

　 　 　表 1　 L 市漏损率异常的 DMA 小区聚类原始数据
Tab. 1　 DMA

 

Clustering
 

Raw
 

Data
 

of
 

Abnormal
 

Leakage
 

Rates
 

in
 

L
 

City

小区编号
MNF /

(m3 ·h-1 )
MNF /
日流量

日均漏

损量 / m3

日均漏

损率

1 3. 12 0. 30 33. 86 13. 60%

2 6. 78 0. 36 70. 17 15. 72%

3 2. 15 0. 01 253. 56 6. 54%

4 7. 63 0. 37 56. 47 11. 35%

5 2. 03 0. 21 19. 35 8. 46%

6 1. 79 0. 38 31. 26 27. 47%

7 10. 58 0. 35 158. 67 21. 72%

8 5. 69 0. 46 48. 35 16. 30%

9 3. 50 0. 25 35. 68 10. 79%

10 4. 37 0. 27 56. 72 14. 76%

11 2. 11 0. 18 36. 70 13. 12%

12 6. 09 0. 21 69. 36 9. 79%

13 12. 33 0. 43 210. 37 30. 57%

14 7. 91 0. 16 162. 46 13. 55%

15 4. 26 0. 22 45. 73 9. 68%

16 5. 68 0. 32 52. 66 12. 54%

17 7. 05 0. 42 70. 62 17. 60%

18 6. 88 0. 41 65. 40 16. 33%

19 8. 46 0. 49 77. 90 18. 87%

20 4. 25 0. 78 29. 32 22. 33%

21 8. 37 0. 10 142. 16 7. 42%

22 4. 65 0. 26 53. 92 12. 33%

23 2. 20 0. 25 38. 52 18. 32%

24 7. 66 0. 14 121. 88 9. 56%

25 0. 88 0. 24 9. 12 10. 38%

26 4. 33 0. 26 53. 57 13. 47%

27 2. 22 0. 16 40. 88 12. 58%

28 8. 65 0. 42 88. 14 17. 69%

29 3. 86 0. 31 46. 83 15. 66%

30 2. 57 0. 19 58. 50 17. 95%

射因子进行优化。 优化算法采用遗传算法,其中,
种群大小设为 500,二进制字串长度设为 50,交叉概

率设为 0. 8,变异概率设为 0. 05,最大迭代轮次为

50,辐射因子区间为[0,1]。 经过遗传算法优化得

到最优辐射因子为 0. 847
 

5,遗传算法适应度进化曲

线如图 5 所示,迭代到第 21 轮目标函数值达到最

优。
场强函数采用核力场函数,每个数据点的质量
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图 4　 DMA 小区 PCA 降维属性散点图

Fig. 4　 Attribute
 

Scatter
 

Plot
 

of
 

DMA
 

Community
 

PCA
 

Dimensionality
 

Reduction
 

图 5　 遗传算法适应度进化曲线

Fig. 5　 Evolutionary
 

Curve
 

of
 

Fitness
 

of
 

Genetic
 

Algorithm

默认为 1,根据遗传算法优化得到的辐射因子可以

计算空间内每个网格点的势值,并可以根据势值画

出三维空间势值图和势分布等高线图(即等势线

图),分别如图 6 和图 7 所示。
由图 6 和图 7 可知,空间中势值有一个特别大

的峰值,以及几个较小的峰值,这说明大多数的

DMA 小区属于同一类,极少数的 DMA 小区属于其

他类。 多数漏损值异常的 DMA 小区都是轻微漏

损,严重漏损属于极少数情况,所以聚类结果符合实

际情况,具体的聚类结果如图 8 所示。
图 8 中不同颜色代表不同的类簇,也就是不同

的 DMA 小区漏损分级预警结果。 根据不同类簇中

心点的势值大小,划分预警级别,类簇中心势值越

小,预警级别越高,成功将漏损事件划分为 5 个聚类

图 6　 DMA 小区三维空间势值

Fig. 6　 3D
 

Spatial
 

Potential
 

Values
 

of
 

DMA
 

Community

图 7　 DMA 小区数据场等势线

Fig. 7　 Equipotential
 

Lines
 

of
 

DMA
 

Community
 

Data
 

Field

图 8　 DMA 小区漏损预警分级聚类结果

Fig. 8　 Clustering
 

Results
 

of
 

DMA
 

Community
 

Leakage
 

Warning
 

Classification
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预警级别,其中 1 级预警占比为 73. 3% ( 22 个小

区),5 级预警仅为 3. 3% (1 个小区),符合现实情

况。 具体划分如表 2 所示。
表 2　 DMA 小区分级预警

Tab. 2　 DMA
 

Community
  

Warning
 

Classification

预警级别 DMA 小区编号

1 1,2,4,5,8,9,10,11,12,15,16,17,18,19,22,
23,25,26,27,28,29,30

2 24

3 3,6,7,14,21

4 20

5 13

2. 3　 漏损预警机制设定

为了增加分级预警系统的稳定性和现实中

工作人员的可操作性,本文在基于数据场聚类的

基础上,采用持续最高等级时长作为实际预警

级别。
为了让系统预警方案更贴近现场运维工作的实

际需求,且降低用户表预测值带来的误差,系统持续

监测每个 DMA 小区在 8
 

h 内处于最高聚类等级的

时长。 预警机制流程如图 9 所示,DMA 小区位于聚

类最高等级的时长大于 2
 

h 且小于等于 4
 

h,即为轻

度预警;时长大于 4
 

h 且小于等于 6
 

h,即为中度预

警;时长大于 6
 

h 为重度预警。 值班人员收到现场

　 　 　

图 9　 预警机制流程

Fig. 9　 Flow
 

of
 

Warning
 

Mechanism
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运维人员对漏损异常 DMA 小区完成检测的反馈

后,可手动将该 DMA 小区的预警持续时长归零。
本文算法被应用于漏损预警监控系统,系统界面如

图 10、图 11 所示。

图 10　 DMA 漏损预警监控系统实时状态

Fig. 10　 Real
 

Time
 

Status
 

of
 

DMA
 

Leakage
 

Warning
 

and
 

Monitoring
 

System

图 11　 DMA 漏损预警监控系统累计状态

Fig. 11　 Cumulative
 

Status
 

of
 

DMA
 

Leakage
 

Warning
 

and
 

Monitoring
 

System

　 　 图 10 为 DMA 漏损预警监控系统实时状态图,
是当前半点时刻状态下漏损预警显示页面。 工作人

员可以根据运行经验,自主选择是否通知巡检人员

处理,如不处理,当前半点时刻的预警信息自动推送

至图 11 预警累计状态信息中。 本文算法在漏损监

控系统中的应用降低了漏损事件响应时长,同时提

高了漏损监控的数字化水平和漏损管理的标准化

水平。
3　 结论

本文利用了基于数据场的聚类算法,首先将同

城大量的 DMA 小区异常漏损率、 异常漏损量、
MNF、MNF / 日流量应用 PCA 法得到最佳聚类分量,
再用数据场聚类算法对 DMA 小区漏损率所处的预

警级别进行分级,同时根据实际工作场景建立动态

预警机制,为具有同城多 DMA 小区管理需求的水

务企业提供了不同优先级处理漏损预警的科学方

案。 本文对于工作人员排查漏损小区的优先级次序

具有指导性作用,但是未将漏损预警机制和水务公

司管理制度进行结合,未来工作将对 DMA 小区漏

损检测进行制度和流程上的优化,从而进一步提升

水务公司漏损管控的效率。
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