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Abstract [ Objective] The water knowledge graph can provide knowledge-driven decision support for water management. However,
the construction and application of the water knowledge graph faces the challenge of completeness due to the lack of key entities and
relationships. Traditional completion method struggles to address issues such as high entity heterogeneity and complex semantic
associations in the water sector. [ Methods]  This paper proposed a knowledge graph completion method based on large language
models for water operation maintenance knowledge graphs. The method consisted of three main steps: First, subgraph structure
information of missing entities was extracted from the knowledge graph. Second, prompt engineering was used to convert the subgraph
structure information into source and target text sequences suitable for large language models. Finally, efficient parameter fine-tuning
was employed to integrate the subgraph structure with the language model, enhancing its reasoning capabilities in water operation and
maintenance knowledge graphs. [ Results]  Compared to a large model that only utilizes knowledge graph triple information ( KG-
LLM) , the proposed method improves the accuracy of triple classification by 6.5% and enhanced the hits@ 1 metric for relationship
prediction by 6.4%. Additionally, in link prediction, the hits@ 1, hits@ 3, and hits@ 10 metrics were improved by 1.6%, 7.3%,
and 5. 7%, respectively. The knowledge graph completion method proposed in this paper was applied in a smart operation and

maintenance site of a water company, resulting in a 22% increase in pump group operating efficiency, a 15% reduction in annual
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maintenance costs, and effectively preventing incidents of sudden water supply interruptions caused by pump bearing failures.

[ Conclusion |

Subgraph structure information can significantly enhance the inference accuracy of large language models for missing

entities, and provide a simpler and more efficient method for complex and diverse operation and maintenance knowledge graph

completion tasks.

Keywords smart water informatization construction knowledge graph large language model knowledge graph completion
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Fig.2 Knowledge Graph Completion of Large Language Model Based on Subgraph Structure Information Enhancement
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W SOl bkl his@3  his@10

TransE  76.5%  61.2%  35.4%  48.6%  60.7%
TransH  78.3%  64.5%  37.6%  50.4%  68.8%
TransR  77.5%  64.2%  37.2%  SL.6%  70.4%
TransD  84.1%  69.5%  34.5%  47.8%  62.2%
CowKB  83.8%  73.6%  39.1%  60.7%  79.4%
DKRL  74.8%  70.5%  36.2%  58.9%  76.5%
KG-BERT  85.4%  78.2%  42.1%  67.1%  84.3%
SIAR  86.4%  79.2%  46.3%  72.4%  88.5%
KGTS — 80.3%  67.1%  41.9%  70.5%  87.2%
KG-LIM  90.2%  78.3%  43.7%  74.3%  89.7%
AL 96.7%  84.7%  45.3%  81.6%  95.4%

IR B Fe A R 5 TV 20 75 A AU ARl 3 FH DI i
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Tab.5 Results of Ablation Experiment

o BV s X R P
- PR hits@ 1 hits@ 1 hits@ 3 hits@ 10
baseline ( 4 30) 96. 7% 84.7% 45.3% 81. 6% 95. 4%
w/0 Subgraph 91.5% 77.9% 41.5% 73.5% 90.3%
w/0 P-Tuning v2 83.3% 74. 5% 37.6% 66. 8% 83.7%
w/0 P-Tuning & Subgraph 50. 8% 43.7% 30. 5% 45. 6% 65. 1%
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Fig. 6 Evaluation Metrics under Different Missing Rates
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