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Abstract [ Objective ] In response to the technical challenges faced by wastewater treatment plants during the upgrading and
renovation process, such as insufficient carbon sources and high nitrogen and phosphorus concentrations in the influent, this paper aims
to optimize key operating parameters by building a pilot plant using the Bardenpho process in the plant area, in order to improve
denitrification efficiency while considering the removal effects of chemical oxygen demand (COD) and total phosphorus (TP ). The
denitrification and phosphorus removal effects under different operating conditions are systematically studied by adjusting parameters
such as carbon source feeding position, feeding amount, mixed liquid reflux ratio, and multi-point influent distribution ratio.
[ Methods] The experiment was divided into three stages: The first stage was to study the optimal carbon source injection point for
Bardenpho process; In the second stage, researched on the combination of carbon source dosage and internal reflux ratio parameters; In

the third stage, researched on optimizing pollutant removal performance through multi-point influent. And based on the research result
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of the three stages, it proposed an enhanced denitrification strategy for the Bardenpho process. [ Results] The optimal carbon source
injection point for the Bardenpho process was in the post anoxic zone, where the addition of carbon source was more conducive to
improving the denitrification efficiency of the system, while also achieving the removal effects of COD and TP. When the carbon source
dosage was 38. 63 mg/L and the internal reflux ratio was 300% , it balanced the effect of nitrogen and phosphorus removal and operating
costs. The effluent total nitrogen (TN) was 8. 15 mg/L, the effluent TP was 0.3 mg/L, and the operating cost was 0.293 yuan.
Adding carbon sources could effectively reduce TN in effluent, but at the same time, it may lead to excessive COD in effluent, resulting
in high denitrification costs. Increasing internal reflux ratio could achieve better denitrification effect. When the internal reflux ratio
exceeded 400% , it will result in higher energy consumption of the reflux facility and an increase in dissolved oxygen in the reflux
solution, which was not conducive to denitrification reaction. When the influent C/N ratio was 3—4, nitrogen and phosphorus removal
could be effectively improved through multi-point influent without adding external carbon sources. When the ratio of pre anoxic zone :

anoxic zone : post anoxic zone=6 : 3 : 1, it could ensure TN<11 mg/L and TP<0. 5 mg/L. [ Conclusion] This paper optimizes the
operating parameters of the pilot plant to effectively improve carbon source utilization, achieves efficient denitrification and phosphorus

removal, and ensure lower denitrification costs. The research results have important practical significance for guiding the actual

operation and upgrading of sewage treatment plants.

Keywords Bardenpho process carbon source dosing point multi-point influent cost of denitrification mixed liquid reflux ratio
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L il
BIFYI(SS)/(mg L) 97~ 147
{2 A E A (COD) / (mg-L7") 187~211
T H AT E B (BODs) /(mg L") 71~77
TN/ (mg-L™") 31~34
A/ (mg-L") 13~17
SE(TP) /(mg-L7h) 2~3
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4 88.5% 87. 4% 86.9% 88. 5%
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6 90. 6% 89.5% 86. 5% 90. 6%
7 91.7% 90. 6% 88.3% 91.7%
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Tab.4  Denitrification Costs under Different Operation Conditions

TOHS  WEGE HUKR TN/ (mg-L7™)  BRERA/ (JE-m ™) RERFERAR/ (JE-m™)  ETEAR/(JEemT) BRI
N1-200 200% 11.09~13. 14 0. 161 0.043 0. 204 78.92%
N1-300 300% 0.052 0.213 75.59%
N1-400 400% 0. 061 0.222 72.52%
N2-200 200% 8.15~9.89 0.242 0. 044 0.286 84. 62%
N2-300 300% 0.051 0.293 82.59%
N2-400 400% 0. 063 0. 305 79. 34%
N3-200 200% 6.33~7.94 0.322 0. 047 0.369 87.26%
N3-300 300% 0.057 0.379 84.96%
N3-400 400% 0. 067 0.389 82.78%

— 122 —



weook HoR
WATER PURIFICATION TECHNOLOGY

Vol. 44 No. 11,2025
November 25th, 2025

ZEA VL E 43, N3-200 . N3-300 . N3-400 X 3 4~
I LH ] B AR B S ARAR B U1 TN R BRAUR (AL
RN A B T 0.322 jo/m’, AR &, I
FLaiR B = 23 5 S8 7K CoD AR, N1-
200 N1-300 \N1-400 3% 3 M al56 20 ] LA LA 3t 2
IKAK TR B A HEBObR A ZER  FLZFEFIK IR
HAEZ R 0.2 Jo/m’, Bifi 5 PR OR 22K A A B 48 e
VFZ 7 CAR T F KB 28— 2 A HERhs
YE B b IX R 7K COD i <30 mg/L, H
JK TN Ji 9 B < 10 mg/L, N2-200, N2-300, N2-
400 3X 3 ML AT R X — R FEIX 3 A,
N2-200 B9 7K TN i BE M 9. 49 me/L, N Il 3
FEFEE N 1009 (9 N2-300 Fé K TN J 5 He B2 R
8. 15 mg/L {H 24 P [ L AR L1 0 100% 4 N2-400
IR A H K TN X T3] 9. 89 me/L, X & Ky
DA IR B 3 T DA 3t 2 6% B A R B (R SR Y

L 3E L 3 v DU) 25 5 o 2 4 DX 11 i B B a4 IX
ST S MR S A A Sz 07 I Lt 2 [i) B 338 it 7k 2% £
¥, NI 2555k F  N2-300 (56 41 5 10 i ik
TR &5 M R L T oL A,
2.3 SAEBHKRUTREYERIERE

MK C/N S 3~4 B, AR , i i £
SUHEK 5 SR m IR R 2 B s TRk R 2
MG T K Je BT B 3 000 mg/L A2 45
FTH 3 4 000 mg/L 2247, K FH 200% I8 4 11 37 L
[ s Ay 7 S D i W 1) TS 5 4R A A B A ALK
VARAEERITE 1. 5~2. 0 me/ L, i B U4 IX s i 48
Ml 7E 2. 0~2.5 mg/L, WK 8 ffi7R , fER £ Stk
AYBOALECR TS U8 B SR B R h R e s
TR Bk R R X R IAAEAN BB IR LT
KH 2 55E K 4y Bl i 75 X 5e 45 B R AT 1Y 38 47

B8 MM AEY B
Fig. 8 Microbial Microscopy Examination of Activated Sludge
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